Structural Re-design of Seawater Pump Impeller Shaft

해수펌프 임펠러 샤프트의 구조 재설계

  • Cho, Kyu-Nam (Dept. of Naval Architecture & Ocean Engineering, Hongik University)
  • 조규남 (홍익대학교 조선해양공학과)
  • Received : 2010.09.06
  • Accepted : 2010.10.08
  • Published : 2010.10.31

Abstract

Critical response of seawater pump impeller shaft structure to various exciting loads is a fundamental factor in re-designing of the structure after its functional failure. In this paper, a typical case of the shaft structure's failure is investigated for re-designing purposes. Failure causes of interest are excessive bending moment, fatigue loads and dynamic resonance due to relevant motor rotation and unbalancing of the rotation loads. Static analyses of shaft structure under the conditions of concerned loads are carried out, followed by a dynamic investigation of the effects of resonance between the shaft and the motor on the structure. The relevant structural analyses are carried out using the Finite Element Methods combined with ANSYS code. Based on these, the primary cause for the shaft's structural failure is obtained. It is found that the change of the bending stiffness of the shaft is the primary concern in the re-designing process. A guideline for the re-design process of the seawater pump shaft structure is established, and a re-design scheme of the structure is proposed.

해수 임펠러샤프트의 각종 하중에 의한 파단과 이를 개선하기위한 재설계는 정적, 동적 해석을 통한 원인분석과 유한요소법을 이용하여 효과적으로 수행할 수 있다. 본 논문에서는 전형적인 임펠러 샤프트의 파손에 대한 원인 분석을 수행하고 관련된 재설계기법을 제시하였다. 일차적으로 정적구조해석을 수행하였고 다음으로 구조물의 외력과의 공진문제를 포함한 동적해석을 수행하였다. 구조해석은 ANSYS코드를 사용하였으며, 결과적으로 파단원인을 찾아 분석하였다. 주된 파단원인은 과도한 굽힘모멘트의 발생과 응력집중, 구조물의 외력과의 공진에 의한 것으로 분석되었다. 해수 임펠러샤프트의 파단과 관련된 재설계기법의 이론적 배경을 정립하였으며, 재설계기법의 적용성과 정적, 동적 샤프트 재설계에 대한 유용성을 제시하였다.

Keywords

References

  1. Cho, K.N. (1989). Nonlinear perturbation methods for dynamic structural redesign, Journal of Korean society of naval architects, 26(1), 39-45.
  2. Cho, K.N. (1997). A study on the applicability of modal analysis techniques to dynamics of offshore structures, Hongik university industrial review, 409-420.
  3. Choi, C.K. (2002). Finite Element Method, Techno Press, 473-476.
  4. Gere, J.M. (2009). Mechanics of materials, Thomson, 217-219
  5. Hoff, C.J. and Bernitsas, M.M. (1986). Dynamic redesign of marine structures, journal of ship research, 29(4), 285-295.
  6. Kim, K.O., Anderson, W.J., Sandstrom, R.E. (1983). Nonlinear inverse perturbation method in dynamic analysis, AIAA journal, 21(9), 1310-1316. https://doi.org/10.2514/3.8245
  7. Sandstrom, R.E., Anderson, W.J. (1982). Modal perturbation method for marine structures, SNAME, transactions, 90, 41-54.
  8. Stetson, K.A, Harrison, I.R. (1981). Redesign of structural vibration modes by finite element inverse perturbation, ASME transactions, journal of engineering power, 103(2), 319-325. https://doi.org/10.1115/1.3230723