• Title/Summary/Keyword: Shadow area detection

Search Result 49, Processing Time 0.024 seconds

A method of generating virtual shadow dataset of buildings for the shadow detection and removal

  • Kim, Kangjik;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.49-56
    • /
    • 2020
  • Detecting shadows in images and restoring or removing them was a very challenging task in computer vision. Traditional researches used color information, edges, and thresholds to detect shadows, but there were errors such as not considering the penumbra area of shadow or even detecting a black area that is not a shadow. Deep learning has been successful in various fields of computer vision, and research on applying deep learning has started in the field of shadow detection and removal. However, it was very difficult and time-consuming to collect data for network learning, and there were many limited conditions for shooting. In particular, it was more difficult to obtain shadow data from buildings and satellite images, which hindered the progress of the research. In this paper, we propose a method for generating shadow data from buildings and satellites using Unity3D. In the virtual Unity space, 3D objects existing in the real world were placed, and shadows were generated using lights effects to shoot. Through this, it is possible to get all three types of images (shadow-free, shadow image, shadow mask) necessary for shadow detection and removal when training deep learning networks. The method proposed in this paper contributes to helping the progress of the research by providing big data in the field of building or satellite shadow detection and removal research, which is difficult for learning deep learning networks due to the absence of data. And this can be a suboptimal method. We believe that we have contributed in that we can apply virtual data to test deep learning networks before applying real data.

Preceding Vehicle Detection Method Using Shadow Recognition (그림자 인식을 이용한 전방차량 검출 방법)

  • Kim, Dong-Sub;Kwon, Han-Joon;Kim, Kyung-Sik;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.303-304
    • /
    • 2006
  • This paper proposes detection method of vehicles using camera for auto-vehicle-system. Detection method is based on shadow detection and symmetric feature of vehicle. This method consists of three part. First is lane detection. By lane detection, we can reduce the area for vehicle detection. Second part is shadow detection. Shadow has information of vehicle width and position. Third part is symmetry. This feature is helpful for confirming the vehicle.

  • PDF

Object Detection Algorithm in a Level Crossing Area Using Image Processing (화상처리를 이용한 철도 건널목의 물체 감지 알고리즘)

  • Yoo, Kwang-Kiun;Han, Seung-Jin;Lee, Key-Seo
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.225-227
    • /
    • 1995
  • An object detection algorithm using a modified IDM(Image Differential Method) is proposed for detecting an object in a level crossing area. The conventional object detection method using LASER light has the deadzone that it cannot detect small objects, while the object detection method using image data in a level crossing area can detect such small objects. But the image data in a level crossing area can be changeable easily because the data is outdoor and sensitive to such surrounding environments as the change of the sun beam, the shadow of cars, and so on. So we resolve these problems by adding the normalization and the process for shadow of the image data in a level crossing area to the basic IDM(Image Differential Method).

  • PDF

Automatic Detection of Vehicle Area Rectangle and Traffic Volume Measurement through Vehicle Sub-Shadow Accumulation (차량 그림자 누적을 통한 검지 영역 자동 설정 및 교통량 측정 방법)

  • Kim, Jee-Wan;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1885-1894
    • /
    • 2014
  • There are various high-performance algorithms in the area of the existing VDSs (vehicle detection systems). However, they requires a large amount of computational time-complexity and their systems generally are very expensive and consumes high-power. This paper proposes real-time traffic information detection algorithm that can be applied to low-cost, low-power, and open development platform such as Android. This algorithm uses a vehicle's sub-shadow to set ROI(region of interest) and to count vehicles using a location of the sub-shadow and the vehicle. The proposed algorithm is able to count the vehicles per each roads and each directions separately. The experiment result show that the detection rate for going-up vehicles is 94.1% and that for going-down vehicles is 97.1%. These results are close to or surpasses 95%, the detection rate of commercial loop detectors.

Shadow Detection and Correction Method for Urban Area using KOMPSAT-3 Image (KOMPSAT-3 영상을 활용한 도심지 그림자 영역의 탐지 및 보정 방법)

  • Park, Sung-Hwan;Lee, Gyu-Seok;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1197-1213
    • /
    • 2017
  • This study was carried out to correct shadow area in urban area on KOMPSAT-3 satellite image. For this study, we analyzed characteristics of the shadow area represented by artificial structures in urban area. The proposed shadow correction method divides shadow area into umbra and penumbra areas according to intensity of darkness. The umbra area was detected through the histogram analysis and the statistical method of the NIR image, and then penumbra area and the sunlit area were detected from around the detected umbra area. The correction of the detected umbra and penumbra area were performed by applying the linear correlation correction method. As a result, it was confirmed that the proposed shadow correction method was visually performed well. Quantitative analysis was performed through profile analysis. It is proved that proposed method is useful for shadow area correction.

HSV Color Model Based Front Vehicle Extraction and Lane Detection using Shadow Information (그림자 정보를 이용한 HSV 컬러 모델 기반의 전방 차량 검출 및 차선 정보 검출)

  • 한상훈;조형제
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.176-190
    • /
    • 2002
  • According as vehicles increases, system such as Advanced Drivers Assistance System(ADAS ) to inform forward situation to driver is required. In this paper, we proposes method to detect forward vehicles and lane from sequential color images by basis process to inform forward situation to driver. We detect a front vehicle using that shadow area exists on part under vehicles and that road area occupies many parts even if road traffic is confused. We detect lane information using that lane part is white order by reverse characteristic of shadow area. This method shows good result in case road is confused or there is direction indication to road. HSV color space is selected for color modeling. This method uses saturation component and value component in HSV color model to detect vehicles and lane. It uses statistics features of HSV component and position to know whether detected vehicles area is vehicles such as vehicles previous frame. To verify the effects of the proposed method, we capture the road images with notebook and CCD camera for PC and Present the results such as processing time, accuracy and vehicles detection against the images.

  • PDF

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Shadowing Area Detection in Image by HSI Color Model and Intensity Clustering (HSI 컬러모델 및 명도 군집화를 이용한 영상에서의 그림자영역 추출)

  • Choi, Yun-Woong;Jang, Young-Woon;Park, Jung-Nam;Cho, Gi-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.455-463
    • /
    • 2008
  • The shadows, which is generated when acquiring data using optical sensor, mutilates consistency of brightness for same objects in the images. Hence, it makes a trouble to interpret the ground information. This study is focused on detecting the shadowing area in the images. And only single image is used without any other data which is acquired from different source. Also, This study presents the method using HSI color model, especially, using I(intensity) information, and the intensity clustering algorithm. Then, we illuminate the effects of shadow by FFT(Fast Fourier Transform).