• Title/Summary/Keyword: Settlement of sand

Search Result 300, Processing Time 0.026 seconds

Behavior of Sand Bag for Maintenance Railroad Bed Subjected to Cyclic Loading (반복하중을 받는 철도노반보수용 샌드백의 거동분석)

  • Shin Eun-Chul;Hwang Seon-Keun;Lee Dong-Hyun;Ryu In-Gi
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1033-1040
    • /
    • 2004
  • Utilizing of the geotextile container shows several advantages such as standardized construction, factory manufactured products, the control of quality, workability. and economical point of view. Recently this technique can be applied to rehabilitate the loss of rail roadbed due to the heavy rainfall. In this study, a large-scale laboratory test were conducted with simulation of static performance on the geotextile container reinforced rail roadbed. Based on the laboratory test results, the vertical pressure distribution with respect to the depth, and settlement of rail roadbed were measured and compared test results between geotextile container reinforced case and unrein forced case. Thus, the effectiveness of reinforcement was evaluated in terms of its performance and stability.

  • PDF

Analysis on the Consolidation Behavior of the Smeared Soil Considering Vertical Drain Spacing (스미어 발생지반에서 배수재 간격비에 따른 압밀거동 분석)

  • Kang, Hee-Woong;Yune, Chan-Young;Jung, Young-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.141-146
    • /
    • 2010
  • To investigate the effect of drainage spacing and smear on the rate of consolidation, a large consolidation chamber and mandrel insertion device were developed. After the occurrence of smear by installation of sand drain, model ground was consolidated in either overconsolidated or normally consolidated state. As smear effect increases and thus drain spacing decreases, total settlement increase in overconsolidated state but has no effect in normally consolidated state. Efficiency of vertical drain decreases and consequently consolidation time increases in all tests as smear effect becomes significant.

  • PDF

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

Study on Characteristics of Soil Compaction using Accelerometer (진동가속도계를 이용한 지반다짐 특성 연구)

  • Chae, Kwang-Seok;Shin, Dong-Hoon;Im, Eun_Sang;Gu, Ja-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1397-1403
    • /
    • 2008
  • Soil compaction works are essential to construction of dams, breakwaters and roads in order to avoid unexpected settlement/deformation of superstructures. Taking advantage of oscillating accelerometer, this research was made to complement existing methods for assessment of soil stiffness. In order to examine the validity of compaction-degree suggested in the study, tests on vibration characteristics using accelerometers was also performed. Test results for sand and gravel mixtures and Korean standard sands were compared and evaluated by conventional assessment methods under varying conditions as of input frequency, size of loading plate and relative density.

  • PDF

The Study on permeability enhancement in smear zone using electro-osmotic pressure (전기 삼투압을 이용한 교란영역의 투수성 개선에 관한 연구)

  • Ahn, Byung-Wook;Noh, Hee-Jeon;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.435-441
    • /
    • 2008
  • More time is required for consolidating soft clay when its hydraulic conductivity around the vertical drains is reduced by soil disturbance. One of the methods to be proposed to solve such problem is the electro-osmotic flow application. This study presents the experimental results of model tests using a modified oedometer and a large-scale cylinder with a sand drain. Results show that the development of negative excessive pore water pressure due to the DC electrical field in saturated clay can be transformed to additional loads causing more consolidation settlement.

  • PDF

A FEM Alalysis to the Sand Densification due to Increasing Loading (점증하중을 받는 사질토 지반의 조밀화에 대한 유한요소해석)

  • 한경제
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.79-85
    • /
    • 2000
  • 본 논문에서는 사질토 지반에 일정기간 계속하여 증가되는 단계별 하중이 작용할 때 발생할수 있는 지반의 밀도화 현상을 hyperbolic model의 매개변수 변화를 고려한 방법으로 유한요소법에 의한 수치적 침하해석에 반영해 주었다. 이를 위해 사질토의 상대밀도별 삼축압축실험을 실시하여 매개변수를 산정하였으며, 이를 토대로 각각의 상대밀도의 변화에 따른 매개변수값을 Lagrange의 다항식 수치보간법으로 프로그램에 반영하였다. 또한 유한요소프로그램 내에서 요소의 체적을 계산하고 체적의 변화를 상대밀도 개념으로 접근함으로서 지반의 밀도화를 프로그램내에서 모사할수 있도록 하였다. 본 연구에서 개발한 해석 프로그램에 의한 지반의 밀도화현상의 모사 결과를 실내 모형기초재하실험에 의하여 비교 분석해 본 결과 기존의 해석 보다 향상된 결과를 나타냄을 알 수 있었다.

  • PDF

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Estimation of the Permeability Variation in Saturated Sand Deposits Subjected to Shaking Load Using 1-g Stinking Table Test (1-g 진동대시험을 이용한 진동하중을 받는 포화된 모래지반의 투수계수 변화 추정)

  • 하익수;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.363-369
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction and to estimate the variation in permeability during shaking load, which should be known for settlement predictions of the ground undergoing liquefaction. In this study, 1-g shaking table tests were carried out for 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured dissipation curve of the excess pore pressure after liquefaction was linearly simulated using the solidification theory, and from the analysis of the slopes of linearly simulated curves, the correlation between dissipation velocity and the gradation characteristics was obtained. By substituting this correlation and the measured settlement to the dissipation velocity equation recommended in solidification theory, the permeability during dissipation was calculated, which was used for estimating the permeability variation during shaking load. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size divided by the coefficient of uniformity. The permeability during dissipation and liquefaction increased by 1.1∼2.8 times and 1.4∼5 times compared to the initial permeability of the original ground, respectively. And the amount of increase became greater as the effective grain size of the test sand increased and the coefficient of uniformity decreased.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.