• Title/Summary/Keyword: Set point

Search Result 2,974, Processing Time 0.029 seconds

SPACES OF CONFORMAL VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • KIM DONG-SOO;KIM YOUNG-HO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.471-484
    • /
    • 2005
  • We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

ON FUZZIFIED REPRESENTATION OF PIAGETIAN REVERSIBLE THINKING

  • Kang, Mee-Kwang;Lee, Byung-Soo
    • Research in Mathematical Education
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 1999
  • In this paper, we represent the Piagetian reversible thinking by using the concept of fuzzy complements. In this case the turning point to the reversible thinking can be corre-sponded to the equilibrium points of a fuzzy set, which are shown through some examples. On the other hand, Piaget considered disequilibrium in the theory of equi-libration as a stimulus for students' cognitive structure, furthermore as the driving forces behind intellectual growth. But we suggest a di erent application o Piagetian equi-librium in another point of view as a tool understanding students' psychological stability in problem solving activity.

  • PDF

Dense Neural Network Graph-based Point Cloud classification (밀집한 신경망 그래프 기반점운의 분류)

  • El Khazari, Ahmed;lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.498-500
    • /
    • 2019
  • Point cloud is a flexible set of points that can provide a scalable geometric representation which can be applied in different computer graphic task. We propose a method based on EdgeConv and densely connected layers to aggregate the features for better classification. Our proposed approach shows significant performance improvement compared to the state-of-the-art deep neural network-based approaches.

Algorithm of Common Solutions to the Cayley Inclusion and Fixed Point Problems

  • Dar, Aadil Hussain;Ahmad, Mohammad Kalimuddin;Iqbal, Javid;Mir, Waseem Ali
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.257-267
    • /
    • 2021
  • In this paper, we develop an iterative algorithm for obtaining common solutions to the Cayley inclusion problem and the set of fixed points of a non-expansive mapping in Hilbert spaces. A numerical example is given for the justification of our claim.

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD

  • FAREE, TAGHAREED A.;PANCHAL, SATISH K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.16-25
    • /
    • 2021
  • This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.

CONTROLLING TRAFFIC LIGHTS AT A BOTTLENECK: THE OBJECTIVE FUNCTION AND ITS PROPERTIES

  • Grycho, E.;Moeschlin, O.
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.727-740
    • /
    • 1998
  • Controlling traffic lights at a bottleneck, in [5] a time of open passage is called optimal, if it minimizes the first moment of the asymptotic distribution of the queue length. The discussion of the first moment as function of the time of open passage is based on an analysis of the behavior of a fixed point when varying control parameters and delivers theoretical and computational aspects of the traffic problem.

  • PDF

MultiView-Based Hand Posture Recognition Method Based on Point Cloud

  • Xu, Wenkai;Lee, Ick-Soo;Lee, Suk-Kwan;Lu, Bo;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2585-2598
    • /
    • 2015
  • Hand posture recognition has played a very important role in Human Computer Interaction (HCI) and Computer Vision (CV) for many years. The challenge arises mainly due to self-occlusions caused by the limited view of the camera. In this paper, a robust hand posture recognition approach based on 3D point cloud from two RGB-D sensors (Kinect) is proposed to make maximum use of 3D information from depth map. Through noise reduction and registering two point sets obtained satisfactory from two views as we designed, a multi-viewed hand posture point cloud with most 3D information can be acquired. Moreover, we utilize the accurate reconstruction and classify each point cloud by directly matching the normalized point set with the templates of different classes from dataset, which can reduce the training time and calculation. Experimental results based on posture dataset captured by Kinect sensors (from digit 1 to 10) demonstrate the effectiveness of the proposed method.

A Novel Virtual Space Vector Modulation Strategy for the Neutral-Point Potential Comprehensive Balance of Neutral-Point-Clamped Converters

  • Zhang, Chuan-Jin;Tang, Yi;Han, Dong;Zhang, Hui;Zhang, Xiao;Wang, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.946-959
    • /
    • 2016
  • A novel Virtual Space Vector (VSV) modulation strategy for complete control of potential neutral point (NP) issues is proposed in this paper. The neutral point potential balancing problems of multi-level converters, which include elimination of low frequency oscillations and self-balancing for NP dc unbalance, are investigated first. Then a set of improved virtual space vectors with dynamic adjustment factors are introduced and a multi-objective optimization algorithm which aims to optimize these adjustment factors is presented in this paper. The improved virtual space vectors and the multi-objective optimization algorithm constitute the novel Virtual Space Vector modulation. The proposed novel Virtual Space Vector modulation can simultaneously recover NP dc unbalance and eliminate low frequency oscillations of the neutral point. Experiment results show that the proposed strategy has excellent performance, and that both of the neutral point potential issues can be solved.

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

RANSAC-based Or thogonal Vanishing Point Estimation in the Equirectangular Images

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1430-1441
    • /
    • 2012
  • In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.