SPACES OF CONFORMAL VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

DONG-SOO KIM AND YOUNG HO KIM

ABSTRACT. We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

1. Introduction

Conformal mappings and conformal vector fields are important in general relativity, as is well known since the early 1920's [6, 18]. In 1925, Brinkmann studied conformal mappings between Riemannian or pseudo-Riemannian Einstein spaces [1]. Later conformal vector fields, or infinitesimal conformal mappings on Einstein spaces were reduced to the case of gradient vector fields, leading to a very fruitful theory of conformal gradient vector fields in general. Brinkmann's work has attracted renewed interest, especially in the context of general relativity [2, 3, 4, 5, 9, 13, 16], and the following local theorems have been shown:

PROPOSITION 1.1. [3] Let (M^4, g) be a 4-dimensional Ricci-flat Lorentz manifold. If M^4 admits a nonhomothetic conformal vector field, then M^4 is a plane gravitational wave.

PROPOSITION 1.2. [4] Let (M^4, g) be a 4-dimensional Einstein but not Ricci flat Lorentz manifold. If M^4 admits a nonisometric conformal vector field, then M^4 has constant sectional curvature.

Received October 31, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 53C50, 53A30, 53C25.

Key words and phrases: pseudo-Riemannian manifold, warped product, conformal vector field.

This work was supported by Korea Research Foundation Grant.(KRF-2001-041-D00026).

PROPOSITION 1.3. (Kerckhove [9])Let (M^n, g) be an n-dimensional Einstein but not Ricci flat pseudo-Riemannian manifold with $Ric = (n-1)kg, k \neq 0$, which carries a conformal vector field. Here we denote by Ric the Ricci tensor of (M^n, g) . If each subspace $\Delta(p)$ spanned by the set of conformal gradient vector fields at $p \in M^n$ is a non-degenerate subspace of T_pM whose dimension m is independent of the choice of the point p, then (M^n, g) is locally isometric to a warped product $B^m(k) \times_f F$. The base B is an m-dimensional space of constant sectional curvature k; the fibre (F, g_F) is an Einstein manifold with $Ric_F = (n - m - 1)\alpha g_F$ for some constant α .

For an arbitrary pseudo-Riemannian manifold (M^n, g) we denote by $A(M^n, g)$ and φ the space of functions f on M^n whose hessian tensor H^f satisfies $H^f = fg$ and the symmetric bilinear form on the space $A(M^n, g)$ defined by $\varphi(f, h) = \langle \nabla f, \nabla h \rangle - fh$, respectively. Then for an arbitrary complete connected pseudo-Riemannian manifold (M^n, g) with $A(M^n, g) \neq \{0\}$, in [7] Kerbrat shows the following global theorems:

PROPOSITION 1.4. (Kerbrat [7]) If dim $A(M^n, g) = m > 0$, and the bilinear form φ is positive definite, then (M^n, g) is isometric to a warped product $H^m \times_f F$, where the base H^m is the hyperbolic space with constant curvature -1, and the fibre F is a complete pseudo-Riemannian manifold satisfying $A(F, g_F) = \{0\}$.

PROPOSITION 1.5. (Kerbrat [7]) If the metric g is indefinite and $\varphi(f,f) < 0$ for some $f \in A(M^n,g)$, then (M^n,g) is isometric to a space form or to a covering of a space form.

The case in which φ is positive semi-definite and degenerate was not treated by Kerbrat (See [9], p.825).

In this paper, we study pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. In Section 3 we improve the global theorems of Kerbrat (Proposition 1.4 and Proposition 1.5) and the local theorem of Kerckhove (Proposition 1.3) under the condition that each subspace $\Delta(p)$ is nondegenerate, which is a necessary condition for (M^n, g) to admit a warped product structure in the sense of Kerbrat or of Kerckhove (Theorem 3.1 and Theorem 3.2). Furthermore, we give a necessary and sufficient condition on the fiber space F for any closed conformal vector fields on the warped product space $M^n = B^m(k) \times_f F$ to be lifted from the base space (Theorem 3.4).

2. Preliminaries and closed conformal vector fields on space forms

We consider an n-dimensional connected pseudo-Riemannian manifold (M^n, g) carrying a closed conformal vector fields V. Hence there is a smooth function ϕ on M^n such that

$$(2.1) \nabla_X V = \phi X$$

for all vector fields X. Here ∇ denotes the Levi-Civita connection on M^n . Then for every point $p \in M^n$ one can find a neighborhood U and a function f such that $V = \nabla f$, where ∇f denotes the gradient of f. It follows that the Hessian $\nabla^2 f$ satisfies

$$(2.2) \nabla^2 f = \phi g.$$

Therefore, $\Delta f = \text{div}V = n\phi$.

From equation (2.1) we immediately obtain the following Ricci identity for the Riemannian curvature tensor:

$$(2.3) R(X,Y)V = X(\phi)Y - Y(\phi)X,$$

and by contraction we get

$$(2.4) Ric(X,V) = (1-n)X(\phi).$$

We denote by $CC(M^n, g)$ the vector space of closed conformal vector fields. First of all, we state some useful lemmas for later use.

LEMMA 2.1. Let V be a non-trivial closed conformal vector field.

(1) If $\gamma:[0,\ell)\to M^n$ is a geodesic with $V(\gamma(0))=a\gamma'(0)$ for some $a\in R$, then we have

(2.5)
$$V(\gamma(t)) = \left(a + \int_0^t \phi(\gamma(s))ds\right)\gamma'(t).$$

(2) If V(p) = 0, then $\operatorname{div} V(p) = n\phi(p) \neq 0$, in particular, all zeros of V are isolated.

Proof. See Propositions 2.1 and 2.3 in
$$[15]$$
.

LEMMA 2.2. Let (M^n, g) be an n-dimensional connected pseudo-Riemannian manifold. Then the following hold:

- (1) dim $CC(M^n, g) \le n + 1$.
- (2) If dim $CC(M^n, g) \geq 2$, there exists a constant $k \in R$ such that for all $V \in CC(M^n, g)$

$$\nabla \phi = -kV,$$

where $n\phi$ is the divergence of V.

Proof. See Proposition 2.3 in [15] and Proposition 4 in [7]. \Box

In [15], W. Kühnel and H. B. Rademacher observed that if the dimension of the space of closed conformal vector fields is maximal, that is, $\dim CC(M^n, g) = n + 1$, then the manifold has constant sectional curvature [15, Remark 2.4].

Now we prove the following:

PROPOSITION 2.3. Let (M^n, g) be an n-dimensional pseudo-Riemannian manifold. If $\dim CC(M^n, g) \ge \max\{2, n-1\}$, then M^n has constant sectional curvature.

Proof. Since $\dim CC(M^n,g) \geq 2$, Lemma 2.2 together with (2.3) shows that there exists a constant $k \in R$ which satisfies

$$(2.6) \qquad R(X,Y)V = k\{ < V, Y > X - < V, X > Y \}, \quad X, Y \in TM$$

for all $V \in CC(M^n, g)$. Choose V_1, \dots, V_{n-1} in $CC(M^n, g)$ in a way that they are linearly independent. Let U be the set of all points p at which $V_1(p), \dots, V_{n-1}(p)$ are linearly independent. Then (2.1) and Lemma 2.1 show that U is an open dense subset of M^n .

For each fixed $p \in U$, choose $V_n(p)$ so that $\{V_1(p), \dots, V_{n-1}(p), V_n(p)\}$ forms a basis for T_pM . It suffices to show that (2.6) holds for V_n instead of V on U. Then the open dense set U has constant sectional curvature k. By continuity, M^n has constant sectional curvature k.

For
$$V = V_i$$
, $1 \le i \le n - 1$, we have from (2.6)

(2.7)
$$\langle R(X,Y)V_n, V \rangle = -\langle R(X,Y)V, V_n \rangle$$

= $\langle k\{\langle V_n, Y \rangle X - \langle V_n, X \rangle Y\}, V \rangle$.

For $V = V_n$, (2.7) is trivial, and hence (2.6) holds for $V = V_n$ due to nondegeneracy of the metric. This completes the proof.

In [10], using the work of Kühnel, W.([12]), the authors characterize the Riemannian space forms in terms of the dimension of the space of conformal gradient vector fields.

The model spaces $B^n(k)$ of constant sectional curvature $k=\epsilon a^2$ with $\epsilon=\pm 1,\quad a>0$ and index ν are the hyperquadrics in pseudo-Euclidean space :

$$S_{\nu}^{n}(a^{2}) = \{x \in R_{\nu}^{n+1} | \langle x, x \rangle = 1/a^{2} \},$$

$$H_{\nu}^{n}(-a^{2}) = \{x \in R_{\nu+1}^{n+1} | \langle x, x \rangle = -1/a^{2} \}.$$

For a fixed vector T in R_{ν}^{n+1} or $R_{\nu+1}^{n+1}$, let σ_T be the height function in the direction of T defined by $\sigma_T(x) = \langle T, x \rangle$. Then one can easily show that on $B^n(k)$,

(2.8)
$$\nabla \sigma_T(x) = T - k\sigma_T(x)x,$$

$$(2.9) \nabla_X \nabla \sigma_T = -k \sigma_T X$$

for all vector fields X of $B^n(k)([9])$. (2.9) implies that for any constant vector T in R^{n+1}_{ν} or $R^{n+1}_{\nu+1}$, $\nabla \sigma_T$ is a closed conformal vector field on the hyperquadric $B^n(k)$, $k = \epsilon a^2$. Furthermore, by counting dimensions (Lemma 2.2) we see that $\nabla \sigma_T$ represents every element of $CC(B^n(k))$.

For the flat space form R^n_{ν} with index ν , the vector field V defined by $V(x) = bx + c, b \in R, c \in R^n_{\nu}$ is a closed conformal vector field. Obviously, by counting dimensions, we have

$$CC(R_{\nu}^{n}, g) = \{bx + c | b \in R, c \in R_{\nu}^{n}\}.$$

For the space of conformal vector fields of pseudo-Riemannian space forms, the authors et al. gave a complete description about it([11]).

Now we introduce a function space $A_k(M^n, g)(k \neq 0)$ and a symmetric bilinear form Φ_k on the space as follows:

$$(2.10) A_k(M^n, g) = \{ f \in C^{\infty}(M) | \nabla_X \nabla f = -kfX, \quad X \in TM \},$$

(2.11)
$$\Phi_k(f,h) = \langle \nabla f, \nabla h \rangle + kfh, \quad f,h \in A_k(M^n,g).$$

In [7], Kerbrat defined a function space $A(M^n, g)$ by

$$A(M^n, g) = \{ f \in C^{\infty}(M) | \nabla_X \nabla f = fX, \quad X \in TM \}$$

and a symmetric bilinear map φ on the space by

$$\varphi(f,h) = \langle \nabla f, \nabla h \rangle - fh, \quad f,h \in A(M^n, q).$$

By the scale change $q \to -kq$, we see that

(2.12)
$$A_k(M^n, g) = A(M^n, -kg), \quad \Phi_k(f, f) = -k\varphi(f, f).$$

For the non-flat space form $B^n(k)$, $k = \epsilon a^2$, (2.8) shows that

(2.13)
$$\Phi_k(\sigma_T, \sigma_S) = \langle \nabla \sigma_T, \nabla \sigma_S \rangle + k\sigma_T \sigma_S = \langle T, S \rangle.$$

This implies that the symmetric bilinear form Φ_k is just the usual scalar product on the ambient pseudo-Euclidean space.

3. Closed conformal vector fields

In this section we consider the vector space $CC(M^n, g)$ of closed conformal vector fields on a pseudo-Riemannian manifold (M^n, g) with indefinite metric g. For $p \in M^n$, let $\Delta(p)$ be the span of the set of closed conformal vector fields at p, that is,

$$\Delta(p) = \{V(p) \in T_p(M) | V \in CC(M^n, g)\}.$$

Suppose that $CC(M^n, g)$ is of dimension $m \ge 2$. Then (2.1) and Lemma 2.2 imply that there exists a constant $k \in R$ such that for all V in $CC(M^n, g)$ with $\phi = (1/n) \text{div} V$

$$(3.1) \nabla \phi = -kV,$$

so that we have

(3.2)
$$\nabla_X \nabla \phi = -k\phi X, \ X \in TM.$$

Hence, if k is nonzero, then the space $CC(M^n, g)$ may be identified with the space $A_k(M^n, g)$ and we have $\Delta(p) = {\nabla f(p)|f \in A_k(M^n, g)}.$

First of all, we establish a global classification theorem.

THEOREM 3.1. Let (M^n, g) be an n-dimensional connected and complete pseudo-Riem- annian manifold with indefinite metric g. Suppose that there exists $k = \epsilon a^2$ with $\epsilon = \pm 1, a > 0$ such that (M^n, g) satisfies

- (a) dim $A_k(M^n, g) = m \ge 1$,
- (b) each subspace $\Delta(p)$ is nondegenerate.

Then one of the following holds:

- (1) (M^n,g) is isometric to $S^n_{\nu}(a^2)$, $H^n_{\nu}(-a^2)$ or a covering space of $S^n_{\nu-1}(a^2)$ or $H^n_1(-a^2)$.
- (2) (M^n, g) is isometric to a warped product space $S_m^m(a^2) \times_{\sigma_T} F^{n-m}$ $(\epsilon = 1)$ or $H^m(-a^2) \times_{\sigma_T} F^{n-m}(\epsilon = -1)$, where the fiber (F, g_F) is an (n-m)-dimensional connected and complete pseudo-Riemannian manifold with $A_k(F, g_F) = \{0\}$, and T is a vector in $R_m^{m+1}(\epsilon = 1)$ or $R_1^{m+1}(\epsilon = -1)$ with $T \in T$ with $T \in T$.

Proof. First, we show that if (M^n, g) is not isometric to a space form in case (1), then the bilinear form Φ_k is definite on $A_k(M^n, g)$. Suppose that $\Phi_k(f, f)$ is trivial for some nontrivial function $f \in A_k(M^n, g)$. If there exists $h \in A_k(M^n, g)$ such that $\Phi_k(f, h) \neq 0$, then it is obvious that

$$\Phi_k(tf+h, tf+h) = 2t\Phi_k(f, h) + \Phi_k(h, h)$$

for all $t \in R$. This implies that there exists a function $l \in A_k(M^n, g)$ such that $\epsilon \Phi_k(l, l) > 0$. Hence, by (2.12) $(M^n, -kg)$ carries a function $l \in A(M^n, -kg)$ which satisfies $\varphi(l, l) < 0$. By Proposition 1.5, we see that $(M^n, -kg)$ is isometric to a space form listed in (1) with curvature -1, so that (M^n, g) is a space form in (1), which is a contradiction. This shows that for the function $f \in A_k(M^n, g)$ we have $\Phi_k(f, h) = 0$ for all $h \in A_k(M^n, g)$. For any point $m \notin f^{-1}(0)$, (2.11) with the condition $\Phi_k(f, f) = 0$ shows that $\nabla f(m)$ is not zero. Since the metric g is indefinite, we can always choose a null vector v in T_mM such that $\langle v, \nabla f(m) \rangle \neq 0$. Let γ be the null geodesic with initial velocity vector v. Then (2.10) implies that

$$(f \circ \gamma)''(t) = -k(f \circ \gamma)(t) < \gamma'(t), \gamma'(t) >= 0,$$

so that we have

$$f(\gamma(t)) = f(m) + < v, \nabla f(m) > t.$$

Hence we see that $f^{-1}(0)$ is not empty. Fix a point $p \in f^{-1}(0)$. Then $\nabla f(p)$ is a nonzero vector (Lemma 2.1) with the property that for all $h \in A_k(M^n, g)$

$$\langle \nabla f(p), \nabla h(p) \rangle = \langle \nabla f(p), \nabla h(p) \rangle + kf(p)h(p) = \Phi_k(f, h) = 0,$$

which means that $\Delta(p)$ is degenerate. This contradiction shows the definiteness of Φ_k .

If $\epsilon \Phi_k(f,f) > 0$ for some function $f \in A_k(M^n,g)$, then as above, Proposition 1.5 with (2.12) shows that (M^n,g) is isometric to a space form in (1). Hence we may assume that $\epsilon \Phi_k$ is negative definite on $A_k(M^n,g)$, that is, φ is positive definite on $A(M^n,-kg)$. Then Proposition 1.4 shows that $(M^n,-kg)$ is isometric to a warped product space $H^m(-1) \times_f F$ with metric $g_{H^m(-1)} + f^2 \tilde{g}_F$, where f is given by $\sqrt{\rho}$ ([7]) and (F,\tilde{g}_F) is a connected complete pseudo-Riemannian manifold with $A(F,\tilde{g}_F) = \{0\}$. Hence (M^n,g) is isometric to $B^m(k) \times_f (F,g_F)$, where the base $B^m(k)$ is a space form $H^m(-a^2)(\epsilon = -1)$ or $S_m^m(a^2)(\epsilon = 1)$ and the metric g_F is given $\frac{-1}{k}\tilde{g}_F$. It is straightforward to show that $f = \sqrt{\rho}$ belongs to $A(H^m(-1))$ with $\varphi(f,f) = -1$. Therefore $f \in A_k(B^m(k))$ with $\Phi_k(f,f) = k$ due to (2.12). Hence f is a height function σ_T for some vector T in R_1^{m+1} or R_m^{m+1} with $\langle T,T\rangle = k$. Since $A(F,\tilde{g}_F) = \{0\}$, we also have $A_k(F,g_F) = \{0\}$.

In the case (2) of Theorem 3.1, if the base space form $B^m(k)$ is neither $S_m^m(a^2)$ nor $H^m(-a^2)$, then for any constant vector T in the ambient pseudo-Euclidean space the function σ_T vanishes on a hypersurface in $B^m(k)$ preventing the warped product construction from extending over all of $B^m(k)$. By contrast, if $B^m(k)$ is either $S_m^m(a^2)$ or $H^m(-a^2)$ and T satisfies T0, then the function T1 is nowhere zero since T2 is nowhere tangent to T3.

Now we prove a local classification theorem(cf. [8, 9]), which is a generalization of Kerckhove's results(Proposition 1.3).

THEOREM 3.2. Let (M^n, g) be an n-dimensional connected pseudo-Riemannian manifold. Suppose that there exists a nonzero constant $k \in R$ such that

- (a) dim $A_k(M^n, g) = m \ge 1$,
- (b) each subspace $\Delta(p)$ is nondegenerate.

Then, for a fixed $p_o \in M^n$ the following hold:

- (1) If dim $\Delta(p_o) < m$, then (M^n, g) is locally isometric to a space $B^n(k)$ of constant sectional curvature k.
- (2) If dim $\Delta(p_o) = m$, then (M^n, g) is locally isometric to a warped product space $B^m(k) \times_{\sigma_T} F$, where the base $B^m(k)$ is a space of constant sectional curvature k and the fiber (F^{n-m}, g_F) is a pseudo-Riemannian manifold. Furthermore, F satisfies the following:
- (i) In case $\langle T, T \rangle \neq 0$, we have $A_{\alpha}(F, g_F) = \{0\}$, where $\alpha = \langle T, T \rangle$.

(ii) In case $\langle T, T \rangle = 0$, F carries no nontrivial homothetic gradient vector fields.

In either case, we have $A_k(M^n, g) = \{\tilde{\sigma}_S | \sigma_S \in A_k(B^m(k)), \langle S, T \rangle = 0\}$, where $\tilde{\sigma}_S$ denotes the lifting of σ_S .

- *Proof.* (1) If $\dim \Delta(p_o) < m$, there exists a nontrivial function $f \in A_k(M^n,g)$ which satisfies $\nabla f(p_o) = 0$. Lemma 2.1 shows that $f(p_o) \neq 0$. Since $\Phi_k(f,f) = kf(p_o)^2$, by the scale change $g \to -kg$ we have $\varphi(f,f) = -f(p_o)^2 < 0$. Hence (1) follows from Proposition 1.5 with the scale change.
- (2) If $\dim \Delta(p_o) = m$, then $\dim \Delta(p) = m$ in a neighborhood of p_o in M^n . Hence, as in the proof of Proposition 1.3 [9], it can be shown that there exists a neighborhood U of p_o which is isometric to a warped product space $B^m(k) \times_f F$ for some positive function f on $B^m(k)$. The base space is the integral submanifold of Δ through p_o and has constant sectional curvature k. Note that the fibre $p \times F$ is totally umblic. Hence the second fundamental form h of the fibre satisfies $h(V, W) = \langle V, W \rangle$ H. For any $\sigma \in A_k(M^n, g)$, we have the following:

$$< V, W > < H, \nabla \sigma > = < h(V, W), \nabla \sigma >$$

$$= V < W, \nabla \sigma > - < W, \nabla_V \nabla \sigma >$$

$$= -k\sigma < V, W > .$$

Thus we obtain $\langle H, \nabla \sigma \rangle = -k\sigma$. Since the mean curvature vector field H is given by $-\nabla f/f$, we have

$$(3.3) < \nabla f, \nabla \sigma > +kf\sigma = 0$$

for all $\sigma \in A_k(M^n, g)$. By taking the covariant derivative of (3.3) with respect to any vector field X on $B^m(k)$, we find

$$(3.4) \langle \nabla_X \nabla f, \nabla \sigma \rangle + \langle kfX, \nabla \sigma \rangle = 0.$$

Since $\nabla \sigma(\sigma \in A_k(M^n, g))$ spans the tangent spaces of $B^m(k)$, (3.4) shows that f belongs to $A_k(B^m(k))$. Hence f is a height function σ_T for some vector T in R^{m+1} . It is easy to show that if S is a vector in R^{m+1} with $\langle S, T \rangle = 0$, then the lifting $\tilde{\sigma}_S$ of the height function σ_S belongs to $A_k(M^n, g)$. By counting dimensions, we see that $A_k(M^n, g) = \{\tilde{\sigma}_S | \sigma_S \in A_k(B^m(k)), \langle S, T \rangle = 0\}$.

Suppose that the constant vector T satisfies $\langle T, T \rangle = \alpha \neq 0$ and h belongs to $A_{\alpha}(F, g_F)$. Then we have

$$\nabla(\sigma_T h) = h \nabla \sigma_T + \frac{1}{\sigma_T} \nabla^* h,$$

where $\nabla^* h$ denotes the gradient vector of h on F. Hence the condition $\Phi_k(\sigma_T, \sigma_T) = \langle T, T \rangle = \alpha$ on $B^m(k)$ shows that the function $\sigma_T h$ lies in the function space $A_k(M^n, g)$. Since the leaves $B^m(k) \times q$, $q \in F$ are the integral submanifolds of the distribution Δ , we see that $\nabla(\sigma_T h)$ must be tangent to the leaves. This shows that $A_{\alpha}(F, g_F) = \{0\}$.

Finally, we suppose that T is a null vector in R^{m+1} and ∇^*h is a homothetic gradient vector field on F with $\nabla_V^*\nabla^*h = cV, c \in R, V \in TF$, where we denote by ∇^* the Levi-Civita connection on F. Then it is not difficult to show that for a null vector \bar{T} in R^{m+1} with $< T, \bar{T} >= -1$, the function l defined by $l = \sigma_T h + c\sigma_{\bar{T}}$ belongs to $A_k(M^n, g)$. Hence as in the proof of case (1), $\nabla l = h\nabla\sigma_T + \frac{1}{\sigma_T}\nabla^*h + c\nabla\sigma_{\bar{T}}$ must be tangent to the leaves. This completes the proof of our theorem.

Note that if (F, g_F) has constant sectional curvature $\alpha = \langle T, T \rangle$, then so does $M^n = B^m(k) \times_{\sigma_T} F$. Hence we see that not all closed conformal vector fields on the warped product need to be lifted from the base. Thus it is worthwhile to find a condition on the fibre F which guarantee that any closed conformal vector fields on the warped product space $M^n = B^m(k) \times_{\sigma_T} F$ to be lifted from the base space.

To find the condition, we state a useful lemma which can be easily shown. Recall that $\mathfrak{L}_V g$ denotes the Lie derivative of g with respect to V.

LEMMA 3.3. [20] Let (M^n, g) be a totally umbilic submanifold of a pseudo-Riemannian space (\bar{M}, \bar{g}) . If V is a conformal vector field on \bar{M} with $\mathfrak{L}_V g = 2\sigma g$, then the tangential part V^T of V on M^n is a conformal vector field on M^n with

$$\mathfrak{L}_{V^T}g = 2\{\sigma + \bar{g}(V, H)\}g,$$

where H denotes the mean curvature vector field of M^n in \bar{M} .

In [11], the authors et al. proved a converse of Lemma 3.3 for hypersurfaces of a pseudo-Riemannian space form.

Now we prove that the necessary condition on F in Theorem 3.2 is sufficient for any closed conformal vector fields on the warped product space $M^n = B^m(k) \times_{\sigma_T} F$ to be lifted from the base space as follows.

THEOREM 3.4. Let (M^n, g) be a warped product space $B^m(k) \times_{\sigma_T} F$, where T is a vector in the ambient pseudo-Euclidean space R^{m+1} of $B^m(k)$. Suppose that the fibre (F, q_F) satisfies the following:

- (1) In case $< T, T > \neq 0$, we have $A_{\alpha}(F, g_F) = \{0\}$, where $\alpha = < T, T > .$
- (2) In case $\langle T, T \rangle = 0$, F carries no nontrivial homothetic gradient vector fields.

Then (M^n, g) satisfies the following:

$$A_k(M^n, g) = {\tilde{\sigma}_S | \sigma_S \in A_k(B^m(k)), < S, T >= 0}.$$

In particular, each subspace $\Delta(p)$ is nondegenerate and of dimension m.

Proof. First note that for a vector S in R^{m+1} the lifting $\tilde{\sigma}_S$ of a height function σ_S belongs to $A_k(M^n,g)$ if and only if < S, T >= 0 [9, p.824]. For such a nontrivial vector S, (2.8) and $\Phi_k(\sigma_S,\sigma_T) = < S, T >= 0$ imply that $\nabla \sigma_S(p) \neq 0$ for any $p \in B^m(k)$. This means that for each $p \in B^m(k)$, $\{\nabla \sigma_S(p) | < S, T >= 0\}$ spans $T_p B^m(k)$.

For any $f \in A_k(M^n, g)$ let f_p denote the restriction of f to the fibre $p \times F$ and ∇f_p the gradient of f_p on $p \times F$. Then ∇f_p is the vertical part of ∇f . Since each fibre $p \times F$ is a totally umbilic submanifold of M^n with mean curvature vector field $\frac{-1}{\sigma_T(p)} \nabla \sigma_T(p)$ and $\mathfrak{L}_{\nabla f} g = -2kfg$ on M^n , we obtain from Lemma 3.3

$$(3.5) \qquad \mathfrak{L}_{\nabla f_p} g|_{p \times F} = \frac{-2}{\sigma_T(p)} \{ \langle \nabla f, \nabla \sigma_T(p) \rangle + k f_p \sigma_T(p) \} g|_{p \times F}.$$

Since ∇f_p is closed, (3.5) implies for all $V \in TF$

(3.6)
$$\nabla_V^* \nabla f_p = \frac{-1}{\sigma_T(p)} \{ \langle \nabla f, \nabla \sigma_T(p) \rangle + k f_p \sigma_T(p) \} V,$$

where ∇^* denotes the Levi-Civita connection on F.

Suppose that $\langle T, T \rangle = 0$. Then σ_T belongs to $A_k(M^n, g)$. Hence (3.6) shows that

(3.7)
$$\nabla_V^* \nabla f_p = \frac{-1}{\sigma_T(p)} \Phi_k(\sigma_T, f) V, \quad V \in TF.$$

Since $g|_{p\times F} = \sigma_T(p)^2 g_F$, it follows from (3.7) that on F

$$\nabla_V^* \nabla f_p = -\sigma_T(p) \Phi_k(\sigma_T, f) V, \quad V \in TF.$$

Hence the hypothesis shows that for each $p \in B^m(k)$, f_p is constant. This implies that f is a function on the base $B^m(k)$. Thus f is a height function σ_S for some vector S in R^{m+1} with $\langle S, T \rangle = 0$.

Now, we suppose that $\langle T,T \rangle \neq 0$. Then the subspace $W = \{\tilde{\sigma}_S | \sigma_S \in A_k(B^m(k)), \langle S,T \rangle = 0\}$ of $A_k(M^n,g)$ is nondegenerate with respect to Φ_k because it is nothing but the orthogonal complement of T in the ambient pseudo-Euclidean space. Hence it suffices to show that the orthogonal complement of W with respect to Φ_k is trivial. For $f \in A_k(M^n,g)$ and a fixed point $p \in B^m(k)$, by differentiating both sides of (3.6) with respect to an arbitrary vector on F, we see that on $p \times F$

(3.8)
$$\langle \nabla f, \nabla \sigma_T \rangle + k \sigma_T(p) f_p = \frac{\langle T, T \rangle}{\sigma_T(p)} f_p + c$$

for some constant c. Suppose that f lies in the orthogonal complement of W. Since $\nabla \sigma_S(p)$ with $\langle S, T \rangle = 0$ generates the tangent space of $B^m(k)$ at p, we can choose S_1, \dots, S_m in the orthogonal complement of T in R^{m+1} such that $\langle \nabla \sigma_{S_i}(p), \nabla \sigma_{S_j}(p) \rangle = \epsilon_i \delta_{ij}$. Using $\Phi_k(f, \sigma_{S_i}) = \Phi_k(\sigma_T, \sigma_{S_i}) = 0$, on $p \times F$ we obtain

$$<\nabla f, \nabla \sigma_T> = k^2 \sigma_T(p) f_p \sum_i \epsilon_i \sigma_{S_i}(p)^2,$$

 $< T, T> = k^2 \sigma_T(p)^2 \sum_i \epsilon_i \sigma_{S_i}(p)^2.$

Hence (3.8) shows that the constant c vanishes. Since $g|_{p\times F} = \sigma_T(p)^2 g_F$, it follows from (3.6) and (3.8) that f_p belongs to $A_{\alpha}(F)$, where $\alpha = < T, T >$. Thus the hypothesis on $A_{\alpha}(F)$ shows that every element f in the orthogonal complement of W is trivial. Thus our theorem is proved. \square

ACKNOWLEDGEMENT. The authors would like to express their deep thanks to the referee for valuable suggestions.

References

- H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119–145.
- [2] K. L. Duggaland Sharma and R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, 1999.
- [3] D. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Homothetic and conformal Symmetries of solutions to Einstein's equations, Comm. Math. Phys. 106 (1986), 137-158.
- [4] D. Garfinkle and Q. Tian, Spacetimes with cosmological constant and a conformal Killing field have constant curvature, Classical Quantum Gravity 4 (1987), 137–139.

- [5] W. D. Halford, Brinkmann's theorem in general relativity, Gen. Relativity Gravitation 14 (1982), 1193–1195.
- [6] G. S. Hall, Symmetries and geometry in general relativity, Differential Geom. Appl. 1 (1991), 35-45.
- Y. Kerbrat, Transformations conformes des varietes pseudo-riemanniannes, J. Differential Geom. 11 (1976), 547-571.
- [8] M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University, 1988.
- [9] _____, The structure of Einstein spaces admitting conformal motions, Classical Quantum Gravity 8 (1991), 819–825.
- [10] D. -S. Kim and Y. H. Kim, A characterization of space forms, Bull. Korean Math. Soc. 35 (1998), no. 4, 757-767.
- [11] D. -S. Kim, Y. H. Kim, S. -B. Kim, and S. -H. Park, Conformal vector fields and totally umbilic hypersurfaces of a pseudo-Riemannian space form, Bull. Korean Math. Soc. 39 (2002), no. 4, 671-680.
- [12] W. Kühnel, Conformal transformations between Einstein spaces, In: Conformal Geometry, R. S. Kulkarni and U. Pinkal, Aspects Math. **E12** (1988), 105–146.
- [13] W. Kühnel and H. B. Rademacher, Twistor spinors with zeros, Internat. J. Math. 5 (1994), 877-895.
- [14] _____, Conformal vector fields on pseudo-Riemannian spaces, Differential Geom. Appl. 7 (1997), 237–250.
- [15] _____, Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures Appl. 74 (1995), no. 9, 453–481.
- [16] B. T. McInnes, Brinkmann's theorem in general relativity and non-Riemannian field theories, Gen. Relativity Gravitation 12 (1980), 767-773.
- [17] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [18] P. Penrose and W. Rindler, Spinors and space time, Vol. 1, 2, Cambridge Monogr. Math. Phys. 1986.
- [19] H. B. Rademacher, Generalized Killing Spinors with imaginary Killing function and conformal Killing fields, In: Global differential geometry and global analysis(Berlin, 1990), Lecture Notes in Math. 1481 (1991), Springer, Berlin, 192-198.
- [20] R. Sharma and K. L. Duggal, A characterization of affine conformal vector field, C. R. Math. Acad. Sci. Soc. R. Can. 7 (1985), 201–205.
- [21] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.

Dong-Soo Kim

Department of Mathematics

Chonnam National University

Kwangju 500-757, Korea

E-mail: dosokim@chonnam.chonnam.ac.kr

Young Ho Kim Department of Mathematics Kyungpook National University Taegu 702-701, Korea E-mail: yhkim@knu.ac.kr