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SPACES OF CONFORMAL VECTOR FIELDS
ON PSEUDO-RIEMANNIAN MANIFOLDS

DonG-Soo KiM AND YouNGg Ho Kim

ABSTRACT. We study Riemannian or pseudo-Riemannian mani-
folds which carry the space of closed conformal vector fields of at
least 2-dimension. Subject to the condition that at each point the
set of closed conformal vector fields spans a non-degenerate sub-
space of the tangent space at the point, we prove a global and a
local classification theorems for such manifolds.

1. Introduction

Conformal mappings and conformal vector fields are important in
general relativity, as is well known since the early 1920’s [6, 18]. In
1925, Brinkmann studied conformal mappings between Riemannian or
pseudo-Riemannian Einstein spaces [1]. Later conformal vector fields,
or infinitesimal conformal mappings on Einstein spaces were reduced
to the case of gradient vector fields, leading to a very fruitful theory
of conformal gradient vector fields in general. Brinkmann’s work has
attracted renewed interest, especially in the context of general relativity
(2, 3,4, 5,9, 13, 16], and the following local theorems have been shown:

PROPOSITION 1.1. [3] Let (M*, g) be a 4-dimensional Ricci-flat Loren-
tz manifold. If M* admits a nonhomothetic conformal vector field, then
M* is a plane gravitational wave.

PROPOSITION 1.2. [4] Let (M*,g) be a 4-dimensional Einstein but
not Ricci flat Lorentz manifold. If M* admits a nonisometric conformal
vector field, then M* has constant sectional curvature.
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ProposITION 1.3. (Kerckhove [9])Let (M™, g) be an n-dimensional
FEinstein but not Ricci flat pseudo-Riemannian manifold with Ric =
(n—1)kg, k # 0, which carries a conformal vector field. Here we denote
by Ric the Ricci tensor of (M™, g). If each subspace A(p) spanned
by the set of conformal gradient vector fields at p € M™ is a non-
degenerate subspace of T,M whose dimension m is independent of the
choice of the point p, then (M™,g) is locally isometric to a warped
product B™(k) x s F. The base B is an m-dimensional space of constant
sectional curvature k; the fibre (F,gr) is an Einstein manifold with
Ricp = (n — m — 1)agr for some constant a.

For an arbitrary pseudo-Riemannian manifold (M™, g) we denote by
A(M™,g) and ¢ the space of functions f on M™ whose hessian tensor
HY satisfies Hf = fg and the symmetric bilinear form on the space
A(M™, g) defined by ¢(f,h) =< Vf,Vh > — fh, respectively. Then for
an arbitrary complete connected pseudo-Riemannian manifold (M™, g)
with A(M™, g) # {0}, in [7] Kerbrat shows the following global theorems:

ProproOSITION 1.4. (Kerbrat [7]) If dim A(M™, g) = m > 0, and the
bilinear form y is positive definite, then (M™, g) is isometric to a warped
product H™ xy F, where the base H™ is the hyperbolic space with
constant curvature —1, and the fibre F' is a complete pseudo-Riemannian
manifold satisfying A(F, gr) = {0}.

ProposiTiON 1.5. (Kerbrat [7]) If the metric g is indefinite and
o(f,f) < 0 for some f € A(M™,g), then (M™,g) is isometric to a
space form or to a covering of a space form.

The case in which ¢ is positive semi-definite and degenerate was not
treated by Kerbrat (See [9], p.825).

In this paper, we study pseudo-Riemannian manifolds which carry the
space of closed conformal vector fields of at least 2-dimension. In Sec-
tion 3 we improve the global theorems of Kerbrat (Proposition 1.4 and
Proposition 1.5) and the local theorem of Kerckhove (Proposition 1.3)
under the condition that each subspace A(p) is nondegenerate, which is
a necessary condition for (M™, g) to admit a warped product structure
in the sense of Kerbrat or of Kerckhove (Theorem 3.1 and Theorem 3.2).
Furthermore, we give a necessary and sufficient condition on the fiber
space F for any closed conformal vector fields on the warped product
space M™ = B™(k) x ¢ F' to be lifted from the base space (Theorem 3.4).
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2. Preliminaries and closed conformal vector fields on space
forms

We consider an n-dimensional connected pseudo-Riemannian mani-
fold (M™, g) carrying a closed conformal vector fields V. Hence there is
a smooth function ¢ on M™ such that

(2.1) VxV =¢X

for all vector fields X. Here V denotes the Levi-Civita connection on
M™. Then for every point p € M™ one can find a neighborhood U and
a function f such that V = V f, where Vf denotes the gradient of f. It
follows that the Hessian V2 f satisfies

(2.2) V2 f = ¢g.

Therefore, Af = divV = ndg.
From equation (2.1) we immediately obtain the following Ricci iden-
tity for the Riemannian curvature tensor:

(2.3) R(X,Y)V = X($)Y - Y()X,
and by contraction we get
(2.4) Ric(X,V)=(1-n)X(9).

We denote by CC(M™, g) the vector space of closed conformal vector
fields. First of all, we state some useful lemmas for later use.

LEMMA 2.1. Let V be a non-trivial closed conformal vector field.
(1) If v : [0,£) — M™ is a geodesic with V(v(0)) = av'(0) for some
a € R, then we have

(2.5) V() = (a+ /0 6(v(s))ds)'(2).

(2) If V(p) = 0, then divV (p) = n¢(p) # 0, in particular, all zeros of
V' are isolated.

Proof. See Propositions 2.1 and 2.3 in [15]. O
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LEMMA 2.2. Let (M™,g) be an n-dimensional connected pseudo-
Riemannian manifold. Then the following hold:
(1) dimCC(M",g) <n+1.
(2) If dim CC(M™, g) > 2, there exists a constant k € R such that
for all V. € CC(M",g)
V¢ =—~kV,

where n¢ is the divergence of V.

Proof. See Proposition 2.3 in [15] and Proposition 4 in [7]. O

In [15], W. Kiihnel and H. B. Rademacher observed that if the di-
mension of the space of closed conformal vector fields is maximal, that
is, dimCC(M™,g) = n + 1, then the manifold has constant sectional
curvature [15, Remark 2.4].

Now we prove the following :

PROPOSITION 2.3. Let (M™, g) be an n-dimensional pseudo-Rieman-
nian manifold. If dimCC(M™", g) > max{2,n—1}, then M™ has constant
sectional curvature.

Proof. Since dimCC(M™,g) > 2, Lemma 2.2 together with (2.3)
shows that there exists a constant k£ € R which satisfies

(26) RX,)Y)W=k{<VY>X-<V,X>Y}, X YeTM

for all V. € CC(M™,g). Choose Vi,--- ,V,_1 in CC(M™,g) in a way
that they are linearly independent. Let U be the set of all points p
at which Vi(p),---,V,—1(p) are linearly independent. Then (2.1) and
Lemma 2.1 show that U is an open dense subset of M™.

For each fixed p € U, choose V,,(p) so that {Vi(p), -, Vaz1(p), Va(p)}
forms a basis for T, M. It suffices to show that (2.6) holds for V;, instead
of V on U. Then the open dense set U has constant sectional curvature
k. By continuity, M™ has constant sectional curvature k.

For V=V, 1<i<n-1, wehave from (2.6)

< R(X,Y)V,, V> = — < R(X,Y)V,V, >

2.7
27) =<k{< Vo, Y >X-<V,, X >Y}V >

For V = V,, (2.7) is trivial, and hence (2.6) holds for V' = V,, due to
nondegeneracy of the metric. This completes the proof. (]
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In [10], using the work of Kiithnel, W.([12]), the authors characterize
the Riemannian space forms in terms of the dimension of the space of
conformal gradient vector fields.

The model spaces B™(k) of constant sectional curvature k = ea? with
e ==+1, a> 0 and index v are the hyperquadrics in pseudo-Euclidean
space :

S™(a?) = {zx € R*""| <z, >=1/a%},

H} (~d®)={z € R}{]| < z,z >= —1/a?}.
For a fixed vector T in R**! or Rﬁﬁ, let or be the height function

in the direction of T defined by or(z) =< T,z > . Then one can easily
show that on B"(k),

(2.8) Vor(z) =T - kor(z)z,

(2.9) VxVor = —korX

for all vector fields X of B™(k)([9]). (2.9) implies that for any constant
vector T in R**! or Rﬁill, Vor is a closed conformal vector field on
the hyperquadric B"(k), k = ea?. Furthermore, by counting dimensions
(Lemma 2.2) we see that Vor represents every element of CC(B™(k)).

For the flat space form R} with index v, the vector field V' defined
by V(z) = bz + ¢,b € R,c € R} is a closed conformal vector field.

Obviously, by counting dimensions, we have
CC(R},g)={bz+clbe R, ce R}}.

For the space of conformal vector fields of pseudo-Riemannian space
forms, the authors et al. gave a complete description about it([11]).

Now we introduce a function space Ax(M™, g)(k # 0) and a symmet-
ric bilinear form ®; on the space as follows:

(2.10)  A(M™, g) = {f € C°(M)|VxVf=—kfX, XeTM},

(2.11) O,(f,h) =<V ,Vh>+kfh, f,he A (M", g).
In [7], Kerbrat defined a function space A(M™, g) by

AM™, g) = {f € C°(M)|VxVf = fX, XeTM)}
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and a symmetric bilinear map ¢ on the space by

o(f,h) =<Vf,Vh>—fh, fheAM"yg).
By the scale change g — —kg, we see that
(2.12) Ap(M", g) = A(M™, —kg), ®i(f,f) = —ko(f, ).
For the non-flat space form B"(k), k = ea?, (2.8) shows that
(2.13) &y (or,05) =< Vorp,Vog > +koros =<T,S > .

This implies that the symmetric bilinear form ®y, is just the usual scalar
product on the ambient pseudo-Euclidean space.

3. Closed conformal vector fields
In this section we consider the vector space CC(M™,g) of closed
conformal vector fields on a pseudo-Riemannian manifold (M™, g) with

indefinite metric g. For p € M™, let A(p) be the span of the set of closed
conformal vector fields at p, that is,

Ap) ={V(p) e ,(M)|V € CC(M™, g)}.
Suppose that CC(M™, g) is of dimension m > 2. Then (2.1) and Lemma
2.2 imply that there exists a constant £k € R such that for all V in
CC(M™, g) with ¢ = (1/n)divV
(3.1) V¢ =-kV,
so that we have
(3.2) VxV¢p=—-koX, X €TM.
Hence, if k is nonzero, then the space CC(M™, g) may be identified with

the space Ax(M™, g) and we have A(p) = {Vf(p)|f € Ax(M™,g)}.
First of all, we establish a global classification theorem.
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THEOREM 3.1. Let (M™, g) be an n-dimensional connected and com-
plete pseudo-Riem- annian manifold with indefinite metric g. Suppose
that there exists k = ea® with e = +1,a > 0 such that (M™, g) satisfies

(a) dim Ax(M™,g) =m >1,

(b) each subspace A(p) is nondegenerate.

Then one of the following holds:

(1) (M™,g) is isometric to S*(a?), H?(—a?) or a covering space of

n-1(a®) or HY(~a?).

(2) (M™, g) is isometric to a warped product space ST (a?) X g0 F*™™
(€ = 1) or H™(—a?)X ;. F""™(e = —1), where the fiber (F, gr) isan (n—
m)-dimensional connected and complete pseudo-Riemannian manifold
with Ag(F,gr) = {0}, and T is a vector in R™*(e = 1) or R"" (e =
—1) with < T, T >=k.

Proof. First, we show that if (M™, g) is not isometric to a space form
in case (1), then the bilinear form @y, is definite on Ax(M™, g). Suppose
that ®x(f, f) is trivial for some nontrivial function f € Ax(M™,g). If
there exists h € Ax(M™,g) such that ®x(f, h) # 0, then it is obvious
that
for all t € R. This implies that there exists a function [ € Ax(M™,g)
such that e®,(l,1) > 0. Hence, by (2.12) (M™, —kg) carries a function
l € A(M"™,—kg) which satisfies ¢(l,1) < 0. By Proposition 1.5, we see
that (M™, —kg) is isometric to a space form listed in (1) with curvature
—1, so that (M™,g) is a space form in (1), which is a contradiction.
This shows that for the function f € Ax(M™,g) we have ®k(f,h) =
0 for all h € Ax(M™,g). For any point m ¢ f~1(0), (2.11) with the
condition ®(f, f) = 0 shows that V f(m) is not zero. Since the metric
g is indefinite, we can always choose a null vector v in T,, M such that
< v,V f(m) ># 0. Let v be the null geodesic with initial velocity vector
v. Then (2.10) implies that

(fo)'(t) = =k(fov)(t) <~ (1),7'(t) >=0,
so that we have
f(y(#) = f(m)+ < v, Vf(m) > t.

Hence we see that f~!(0) is not empty. Fix a point p € f~1(0). Then
Vf(p) is a nonzero vector (Lemma 2.1) with the property that for all
h € Ak:(Mna g)

< V£(p), Vh(p) >=< V{(p), Vh(p) > +kf(p)h(p) = ®&(f,h) =0,
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which means that A(p) is degenerate. This contradiction shows the
definiteness of @,.

If €®4(f, f) > 0 for some function f € Ax(M™,g), then as above,
Proposition 1.5 with (2.12) shows that (M™, g) is isometric to a space
form in (1). Hence we may assume that e®j is negative definite on
Ar(M™, g), that is, ¢ is positive definite on A(M™, —kg). Then Propo-
sition 1.4 shows that (M™, —kg) is isometric to a warped product space
H™(—1) x ¢ F with metric ggm_1) + f2§r, where f is given by \/p ([7])
and (F,gr) is a connected complete pseudo-Riemannian manifold with
A(F,gr) = {0}. Hence (M", g) is isometric to B™(k) x ¢ (F, gr), where
the base B™ (k) is a space form H™(—a?)(e = —1) or S™(a?)(e = 1) and
the metric gp is given lkl— gr. It is straightforward to show that f = ,/p
belongs to A(H™(—1)) with ¢(f, f) = —1. Therefore f € Ax(B™(k))
with ®(f, f) = k due to (2.12). Hence f is a height function o7 for some
vector T in RT*! or RV with < T,T >= k. Since A(F,§r) = {0},
we also have Ag(F,gr) = {0}. O

In the case (2) of Theorem 3.1, if the base space form B™ (k) is neither
S™(a?) nor H™(—a?), then for any constant vector T in the ambient
pseudo-Euclidean space the function o7 vanishes on a hypersurface in
B™(k) preventing the warped product construction from extending over
all of B™(k). By contrast, if B™(k) is either ST (a?) or H™(—a?) and
T satisfies < T,T >= k, then the function or is nowhere zero since T’
is nowhere tangent to B™ (k).

Now we prove a local classification theorem(cf. [8, 9]), which is a
generalization of Kerckhove’s results(Proposition 1.3).

THEOREM 3.2. Let (M™,g) be an n-dimensional connected pseudo-
Riemannian manifold. Suppose that there exists a nonzero constant
k € R such that

(a) dim Ax(M™,g) =m > 1,

(b) each subspace A(p) is nondegenerate.

Then, for a fixed p, € M™ the following hold:

(1) If dim A(p,) < m, then (M™,g) is locally isometric to a space
B™(k) of constant sectional curvature k.

(2) If dim A(p,) = m, then (M", g) is locally isometric to a warped
product space B™(k) X ,,. F', where the base B™(k) is a space of constant
sectional curvature k and the fiber (F"~™, gr) is a pseudo-Riemannian
manifold. Furthermore, F satisfies the following :

(i) In case < T, T ># 0, we have A,(F,gr) = {0}, where a =<
TT>.
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(ii) In case < T, T >= 0, F' carries no nontrivial homothetic gradient
vector fields.

In either case, we have A, (M™, g) = {Gs|os € Ax(B™(k)),< S,T >=
0}, where &g denotes the lifting of 0.

Proof. (1) If dimA(p,) < m, there exists a nontrivial function f €
Ak(M™, g) which satisfies Vf(p,) = 0. Lemma 2.1 shows that f(p,) #
0. Since ®r(f,f) = kf(po)?, by the scale change g — —kg we have
o(f, f) = —f(po)? < 0. Hence (1) follows from Proposition 1.5 with the
scale change.

(2) If dimA(p,) = m, then dimA(p) = m in a neighborhood of p,
in M™. Hence, as in the proof of Proposition 1.3 [9], it can be shown
that there exists a neighborhood U of p, which is isometric to a warped
product space B™ (k) x ¢ F for some positive function f on B™(k). The
base space is the integral submanifold of A through p, and has constant
sectional curvature k. Note that the fibre p x F is totally umblic. Hence
the second fundamental form h of the fibre satisfies A(V, W) =< V,W >
H. For any o € Ax(M™, g), we have the following:

<V,W>< H,Vo>=<h(V,W),Vo >
= V<W, Vo> - < W, VyVe >

= ko< V,W>.
Thus we obtain < H,Veo >= —ko. Since the mean curvature vector
field H is given by —V f/f, we have
(3.3) <Vf,Vo>+kfo=0

for all 0 € Ax(M™, g). By taking the covariant derivative of (3.3) with
respect to any vector field X on B™(k), we find

(3.4) <VxVfVo>+<kfX,Vo>=0.

Since Vo(o € Ax(M™,g)) spans the tangent spaces of B™(k), (3.4)
shows that f belongs to Ax(B™(k)). Hence f is a height function o
for some vector T in R™*!. 1t is easy to show that if S is a vector in
R™! with < S§,T >= 0, then the lifting 65 of the height function og
belongs to Ax(M™", g). By counting dimensions, we see that Ax(M",g) =
{5’5|Us € Ak(Bm(k)), < 8,T >= 0}

Suppose that the constant vector T satisfies < T, T >=a # 0 and A
belongs to A, (F, gr). Then we have

V(O‘Th) = hVor + —1—V*h,
oT
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where V*h denotes the gradient vector of h on F. Hence the condition
@i (or,0r) =< T,T >= o on B™(k) shows that the function orh lies
in the function space Ax(M™,g). Since the leaves B™(k) x ¢, ¢ € F
are the integral submanifolds of the distribution A, we see that V(orh)
must be tangent to the leaves. This shows that A, (F,gr) = {0}.
Finally, we suppose that 7" is a null vector in R™*! and V*h is a
homothetic gradient vector field on F' with Vi,V*h = cV,c € R, V €
TF, where we denote by V* the Levi-Civita connection on F. Then it is
not difficult to show that for a null vector T in R™*+! with < T, T >= —1,
the function [ defined by | = orh + cof belongs to Ax(M™, g). Hence as
in the proof of case (1), VI = hVor + %V*h + cVo7 must be tangent
to the leaves. This completes the proof of our theorem. O

Note that if (F,gr) has constant sectional curvature o =< T,T >,
then so does M™ = B™(k) X,, F. Hence we see that not all closed
conformal vector fields on the warped product need to be lifted from
the base. Thus it is worthwhile to find a condition on the fibre F which
guarantee that any closed conformal vector fields on the warped product
space M™ = B™(k) X4, F to be lifted from the base space.

To find the condition, we state a useful lemma which can be easily
shown. Recall that £y ¢ denotes the Lie derivative of g with respect to
V.

LEMMA 3.3. [20] Let (M™,g) be a totally umbilic submanifold of a
pseudo-Riemannian space (M, g). If V is a conformal vector field on M
with £ g = 204, then the tangential part VT of V on M™ is a conformal

vector field on M™ with
Lyrg =2{c +g(V, H)}g,

where H denotes the mean curvature vector field of M™ in M.

In [11], the authors et al. proved a converse of Lemma 3.3 for hyper-
surfaces of a pseudo-Riemannian space form.

Now we prove that the necessary condition on F' in Theorem 3.2 is
sufficient for any closed conformal vector fields on the warped product
space M™ = B™(k) X4, F to be lifted from the base space as follows.

THEOREM 3.4. Let (M™, g) be a warped product space B™(k) x 5, F,
where T is a vector in the ambient pseudo-Euclidean space R™*! of
B™(k). Suppose that the fibre (F, gr) satisfies the following :
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(1) In case < T,T ># 0, we have Ay(F,gr) = {0}, where o =<
T,T > .

(2) In case < T, T >= 0, F carries no nontrivial homothetic gradient
vector fields.

Then (M™, g) satisfies the following :

Ap(M™, g) = {55|os € A(B™(k)), < S,T >= 0}.

In particular, each subspace A(p) is nondegenerate and of dimension
m.

Proof. First note that for a vector S in R™*! the lifting ¢ of a height
function og belongs to A,(M™,g) if and only if < S,T >=0 [9, p.824].
For such a nontrivial vector S, (2.8) and ®x(os,07) = < S, T >= 0
imply that Vog(p) # 0 for any p € B™(k). This means that for each
p € B™(k), {Vos(p)| < S,T >= 0} spans T,B™(k).

For any f € Ax(M",g) let f, denote the restriction of f to the fibre
p x F and V fp the gradient of f, on p x F. Then Vf, is the vertical
part of V£. Since each fibre p x F is a totally umbilic submanifold of
M™ with mean curvature vector field ;;%EVUT(])) and Lyvsg = —2kfg
on M™, we obtain from Lemma 3.3

-2

(35)  Lvpglexr = ;—ka Vf,Vor(p) > +kfpor(p)}glpx -

Since V f,, is closed, (3.5) implies for all V € TF

(36) VIV, = — A< VS, Vor(p) > +kfyor(p)}V,
O“T(P)

where V* denotes the Levi-Civita connection on F.
Suppose that < T,T >= 0. Then or belongs to Ax(M",g). Hence
(3.6) shows that

or(p)

Since glpxr = or(p)3gr, it follows from (3.7) that on F

(3.7) VLV, = dc(or, f)V, V eTF.

vV fp = —or(p)®k(or, )V, V €TF.

Hence the hypothesis shows that for each p € B™(k), f, is constant.
This implies that f is a function on the base B™(k). Thus f is a height
function og for some vector S in R™*! with < S,T >=0.
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Now, we suppose that < T,T >%# 0. Then the subspace W =
{0slos € Ap(B™(k)),< S,T >= 0} of Ax(M™,g) is nondegenerate
with respect to @ because it is nothing but the orthogonal complement
of T in the ambient pseudo-Euclidean space. Hence it suffices to show
that the orthogonal complement of W with respect to @i is trivial. For
f € Ag(M™,g) and a fixed point p € B™(k), by differentiating both
sides of (3.6) with respect to an arbitrary vector on F, we see that on
px F

(3.8) < Vf,Vor > +kor(p)f, = %)Z fp+e

for some constant ¢. Suppose that f lies in the orthogonal complement
of W. Since Vog(p) with < S,T >= 0 generates the tangent space of
B™(k) at p, we can choose Sy, -+, Sp, in the orthogonal complement of
T in R™*1 such that < Vog,(p), Vos, (p) >= €:0;;. Using ®x(f,0s,) =
&, (07,05,) =0, on p X F we obtain

< Vf Vor >= k:zaT(p)fp Z €i0s,(p)?,

<T,T >=kor(p)* Y cios,(p)*.

Hence (3.8) shows that the constant ¢ vanishes. Since gl,xr = or(p)%gr,
it follows from (3.6) and (3.8) that f, belongs to Ay (F), where oo =<
T,T > . Thus the hypothesis on A, (F') shows that every element f in the
orthogonal complement of W is trivial. Thus our theorem is proved. U
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