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ABSTRACT. This paper is studied the existence of a solution for the impulsive Cauchy problem

involving the Caputo fractional derivative in Banach space by using topological structures. We

based on using topological degree method and fixed point theorem with some suitable condi-

tions. Further, some topological properties for the set of solutions are considered. Finally, an

example is presented to demonstrate our results.

1. INTRODUCTION

Fractional differential equations have proved to be effective modeling of many physical phe-

nomena and various fields for more details, see Kilbas et al. [1], Miller and Ross [2], Podlubny

[3], Deimling [4]. Topological degree method is one of the important tools that procedure

needs weakly compact conditions instead of strongly compact conditions. In fact, topologi-

cal methods become very closely to study the existence of solutions of fractional differential

equations in the last decades, see Feckan [5], and Mawhin [6]. The fractional differential equa-

tions in Banach space have recently been receiving more attention by many researchers such

as Agarwal et al. [7], Balachandran and Park [8], and Zhang [9]. In 2009, Benchohra and Seba

[10], considered the existence of solutions for impulsive fractional differential equations in a

Banach space by Monch’s fixed point theorem and the technique of measures of non compact-

ness. In 2010, Ahmad and Sivasundaram [11], studied the existence of solutions for impulsive

integral boundary value problems with fractional order by applying the contraction mapping

principle and Krasnoselskii’s fixed point theorem. In 2012, Wang et.al [12, 13], studied exis-

tence, uniqueness and data dependence for the solutions for impulsive Cauchy problems with

fractional order by degree method for condensing maps by a singular Gronwall inequality. In

2012, Feckan et. al [14], corrected a formula of solutions for impulsive fractional differential
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equations which cited in the previous paper and they established some sufficient conditions

for existence of the solutions by using fixed point methods. Motivated from some cited re-

sults, our aim in this paper is to confirm some new results on the following impulsive Cauchy

problem (ICP) for fractional differential equations involving the Caputo fractional derivative

by topological degree method and fixed point theorem.






cDqx(t) = ξ(t, x(t)) t ∈ J /{t1, t2, ..., tm},J := [0, T ]
x(0) = x0,
∆x(tk) = Ik(x(tk)) k = 1, 2, ...,m,

(1.1)

where cDq is the Caputo fractional derivative of order q ∈ (0, 1), x0 is an element of X ,

ξ : J × X → X is a given jointly continuous linear map, and PC(J ,X ) is a Banach space

with the norm ‖x‖PC = sup{‖x(t)‖ : t ∈ J } , Ik : X → X is a continuous map and tk
satisfies, 0 = t0 < t1 < t2 < ... < tm < tm+1 = T .

2. PRELIMINARIES

In this section, we introduce some necessary definitions and theorems which are needed

throughout this paper.

We define a Banach space PC(J ,X ) = {x : J → X : x ∈ C((tk, tk−1],X )}, for k =
0, ...,m and there exist x(t+k ) and x(t−k ) such that x(t−k ) = x(tk), x(t

+
k ) = limǫ→0+ x(tk + ǫ)

and x(t−k ) = limǫ→0− x(tk + ǫ) represent the right and left limits of x(t) at t = tk.

Definition 2.1. ([2]) For a given function ξ on the closed interval [a, b], the qth fractional

order integral of ξ is defined by;

Iq
a+ξ(t) =

1

Γ(q)

∫ t

a
(t− s)q−1ξ(s)ds,

wherever Γ is the gamma function.

Definition 2.2. ([2]) For a given function ξ on the closed interval [a, b], the qth Riemann-

Liouville fractional-order derivative of ξ, is defined by;

(Dq
a+ξ)(t) =

1

Γ(n− q)
(
d

dt
)n

∫ t

a
(t− s)n−q−1ξ(s)ds.

Here n = [q] + 1 and [q] denotes the integer part of q.

Definition 2.3. ([2]) For a given function ξ on the closed interval [a, b], the Caputo fractional

order derivative of ξ, is defined by;

(cDq
a+ξ)(t) =

1

Γ(n− q)

∫ t

a
(t− s)n−q−1ξ(n)(s)ds,

where n = [q] + 1 .

Theorem 2.1. (Banach contraction mapping principle)([15])

Let X be a Banach space, and ψ : X → X is a contraction mapping with contraction constant

K, then ψ has a unique fixed point.
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Theorem 2.2. (Schaefer’s fixed point theorem)([15])

Let K be a nonempty convex, closed and bounded subset of a Banach space X . If ψ : K → K
is a complete continuous operator such that ψ(K) ⊂ X , then ψ has at least one fixed point in

K.

Lemma 2.1. ([14]) Let q ∈ (0, 1) and ξ : X ×J → X be continuous. A function x ∈ C(J ,X )
is said to be a solution of the fractional integral equation

x(t) = x0 −
1

Γ(q)

∫ a

0
(a− s)q−1ξ(s, x(s))ds+

1

Γ(q)

∫ t

0
(t− s)q−1ξ(s, x(s))ds,

if and only if x is a solution of the following fractional Cauchy problems
{

cDqx(t) = ξ(t, x(t)), t ∈ J ,
x(a) = x0, a > 0

3. MAIN RESULTS

First of all, let us define the mean of a solution of the ICP(1.1).

Definition 3.1. If a function x ∈ PC(J ,X ) satisfies the equation cDqx(t) = ξ(t, x(t)) almost

everywhere on J , and the condition ∆x(tk) = Ik(x(tk)), k = 1, 2, ...,m and x(0) = x0 then,

x is said to be a solution of the fractional ICP(1.1).

In order to treat the problem of existence for a solution of ICP(1.1), we need the following

assumptions:

H1: ξ : J × X → X is jointly continuous.

H2: For arbitrary x, y ∈ X , there exists a constant δξ > 0, such that

‖ξ(t, x)− ξ(t, y)‖ ≤ δξ‖x− y‖
H3: For arbitrary (t, x) ∈ J × X , there exist δ1, δ2 > 0, q1 ∈ [0, 1) such that

‖ξ(t, x)‖ ≤ δ1‖x‖q1 + δ2.

H4: Ik : X → X is continuous and there is a constant γI ∈ [0, 1
m) such that

‖Ik(x)− Ik(y)‖ ≤ γI‖x− y‖, for all x, y ∈ X , k = 1, 2, ...,m

H5: For arbitrary x ∈ X , there exist γ1, γ2 > 0, q2 ∈ [0, 1) such that

‖Ik(x)‖ ≤ γ1‖x‖q2 + γ2, k = 1, 2, ...,m

Lemma 3.1. The fractional integral

x(t) = x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1ξ(s, x(s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1ξ(s, x(s))ds+
∑

0<tk<t

Ik(x(tk))

(3.1)
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has a solution x ∈ PC(J ,X ), for t ∈ (tk, tk+1), k = 1, 2, ...,m if and only if x is a

solution of the fractional ICP(1.1).

Proof. First, assume x ∈ PC(J ,X ) satisfies ICP(1.1), we have to show that the fractional inte-

gral Eq. (3.1) has at least one solution x ∈ PC(J ,X ). Consider the operator F : PC(J ,X ) →
PC(J ,X ) defined by;

(Fx)(t) = x(t) = x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1ξ(s, x(s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1ξ(s, x(s))ds+
∑

0<tk<t

Ik(x(tk)), k = 1, 2, ...,m.

It obvious that F is well defined due to [H1] and [H4]. Let {xn} be a sequence such that

xn → x in PC(J ,X ). Then, for each t ∈ J we consider

‖(Fxn)(t)− (Fxm)(t)‖ ≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xn(s))− ξ(s, xm(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xn(s))− ξ(s, xm(s))‖ds+
∑

0<tk<t

‖Ik(xn(tk))− Ik(xm(tk))‖

≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xn(s))− ξ(s, x(s)) + ξ(s, x(s))− ξ(s, xm(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xn(s))− ξ(s, x(s)) + ξ(s, x(s))− ξ(s, xm(s))‖ds

+
∑

0<tk<t

‖Ik(xn(tk))− Ik(x(tk)) + Ik(x(tk))− Ik(xm(tk))‖

≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xn(s))− ξ(s, x(s))‖ds

+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xm(s))− ξ(s, x(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xn(s))− ξ(s, x(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xm(s))− ξ(s, x(s))‖ds

+
∑

0<tk<t

‖Ik(xn(tk))− Ik(x(tk))‖+
∑

0<tk<t

‖Ik(xm(tk))− Ik(x(tk))‖
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Since Ik is continuous and ξ is also jointly continuous, then we have

‖ξ(s, xn(s)) − ξ(s, x(s))‖ → 0 as n → ∞, also,
∑

0<tk<t ‖Ik(xn(tk)) − Ik(x(tk))‖ →
0 as n → ∞, therefore ‖(Fxn)(t) − (Fxm)(t)‖ → 0 as n,m → ∞. Consequently, by

assumptions [H2] and [H4], it is not difficult to obtain that ‖(Fxn)(t)−(Fx)(t)‖ → 0 as n→
∞, as follows;

‖(Fxn)(t)− (Fx)(t)‖ ≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xn(s))− ξ(s, x(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xn(s))− ξ(s, x(s))‖ds+
∑

0<tk<t

‖Ik(xn(tk))− Ik(x(tk))‖

≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1δξ‖xn − x‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1δξ‖xn − x‖ds+
∑

0<tk<t

γI‖xn − x‖ → 0 as n→ ∞

Thus, F is continuous and completely continuous. Consequently, by Schaefer’s fixed point

theorem, one can deduce that F has at least one fixed point on PC(J ,X ) which is a solution

of the fractional ICP(1.1).

Conversely, assume that x satisfies the fractional integral Eq. (3.1). If t ∈ (0, t1] then

x(0) = x0 and by using the fact that cDq
t is the left inverse of Iqt and by Lemma (2.1),

one can obtain cDq
tx(t) = ξ(t, x(t)). If t ∈ (tk, tk+1], k = 1, ...,m also by Lemma (2.1)

and using that fact the Caputo derivative of a constant is equal to zero. It can deduced that
cDq

tx(t) = ξ(t, x(t)) for t ∈ (tk, tk+1] and x(t+k ) = x(t−k ) + Ik(x(tk)) which completes the

proof. �

Lemma 3.2. The operator F : PC(J ,X ) → PC(J ,X ) is bounded.

Proof. It is sufficient to show that for any µ > 0, there exists a constant K > 0 such that

for each x ∈ βµ = {‖x‖PC ≤ µ : x ∈ PC(J ,X )}, then we have ‖Fx‖PC ≤ K. Now,

let {xn} be a sequence on a bounded subset M ⊂ βµ, for every xn ∈ M by assumptions

[H3] and [H5], we have

‖(Fxn)(t)‖pc ≤ ‖x0‖+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, xn(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, xn(s))‖ds+
∑

0<tk<t

‖Ik(xn(tk))‖, k = 1, 2, ...,m

≤ ‖x0‖+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1[δ1‖xn‖q1 + δ2]ds



IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS BY TOPOLOGICAL METHOD 21

+
1

Γ(q)

∫ t

tk

(t− s)q−1[δ1‖xn‖q1 + δ2]ds+
∑

0<tk<t

[γ1‖xn‖q2 + γ2], k = 1, 2, ...,m

Which implies that

‖(Fxn)(t)‖PC ≤ ‖x0‖+
(m+ 1)[δ1µ

q1 + δ2]T
q

Γ(q + 1)
+m[γ1µ

q2 + γ2] := K.

Therefore (Fxn) is uniformly bounded on M, which implies F(M) is bounded in βµ ⊆
PC(J ,X ). �

Lemma 3.3. The operator F : PC(J ,X ) → PC(J ,X ) is equicontinuous.

Proof. Let {xn} be a sequence on a bounded subset M ⊂ βµ as we defined in Lemma (3.2).

For t1, t2 ∈ J , and t1 < t2, we consider

‖(Fxn)(t2)− (Fxn)(t1)‖ = ‖ 1

Γ(q)

∑

0<tk<t2

∫ tk

tk−1

(tk − s)q−1ξ(s, xn(s))ds

− 1

Γ(q)

∑

0<tk<t1

∫ tk

tk−1

(tk − s)q−1ξ(s, xn(s))ds+
1

Γ(q)

∫ t2

tk

(t2 − s)q−1ξ(s, xn(s))ds

− 1

Γ(q)

∫ t1

tk

(t1 − s)q−1ξ(s, xn(s))ds+
∑

0<tk<t2−t1

Ik(xn(tk))‖, k = 1, 2, ...,m

‖(Fxn)(t2)− (Fxn)(t1)‖ = ‖ 1

Γ(q)

∫ t1

0
(t2 − s)q−1ξ(s, xn(s))ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1ξ(s, xn(s))ds+
1

Γ(q)

∫ tk

t2

(t2 − s)q−1ξ(s, xn(s))ds

− 1

Γ(q)

∫ t1

0
(t1 − s)q−1ξ(s, xn(s))ds−

1

Γ(q)

∫ tk

t1

(t1 − s)q−1ξ(s, xn(s))ds

+
1

Γ(q)

∫ t2

tk

(t2 − s)q−1ξ(s, xn(s))ds−
1

Γ(q)

∫ t1

tk

(t1 − s)q−1ξ(s, xn(s))ds

+
∑

0<tk<t2−t1

Ik(xn(tk))‖

≤ 1

Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]‖ξ(s, xn(s))‖ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1‖ξ(s, xn(s))‖ds+
∑

0<tk<t2−t1

‖Ik(xn(tk))‖

As t2 → t1, then it is easy to deduce that the right hand side of the above inequality tends to

zero. Therefore, (Fxn) is equicontinuous. �
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Lemma 3.4. The operator F : PC(J ,X ) → PC(J ,X ) is compact.

Proof. Consider a closed subset H ⊆ PC(J ,X ). Since F : PC(J ,X ) → PC(J ,X ) is

bounded and equicontinuous then by the Arzela Ascoli theorem, we get F : PC(J ,X ) →
PC(J ,X ) is completely continuous which implies F(H) is a relatively compact subset of

PC(J ,X ). Therefore F : PC(J ,X ) → PC(J ,X ) is compact. �

Theorem 3.1. Assume that [H1] − [H5] hold, then the fractional ICP(1.1) has at least one

solution.

Proof. It is clear that the fixed points of the operator F are solutions of the ICP(1.1). Obviously

the operator F : PC(J ,X ) → PC(J ,X ) is continuous and completely continuous, then we

shall prove that S(F) = {x ∈ PC(J ,X ) : x = κFx, for some κ ∈ [0, 1]} is bounded. Let

x ∈ S(F), then x = κFx for some κ ∈ [0, 1].

‖x(t)‖Pc ≤ κ‖(Fx)(t)‖ ≤ ‖x0‖+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, x(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, x(s))‖ds+
∑

0<tk<t

‖Ik(x(tk))‖, k = 1, 2, ...,m

≤ ‖x0‖+
(m+ 1)[δ1µ

q1 + δ2]T
q

Γ(q + 1)
+m[γ1µ

q2 + γ2].

The above inequality at the same time with q1, q2 ∈ [0, 1) and by result of Lemma (3.2) show

that S is bounded in PC(J ,X ). As a consequence of Schaefer’s fixed point theorem, we can

deduce that F has a fixed point which is a solution of the fractional ICP(1.1). �

Theorem 3.2. Assume that [H1] − [H5] hold, then the set of solutions for the fractional

ICP(1.1) is convex.

Proof. By Theorem (3.1), it is obvious that the fractional ICP(1.1) has a solution in PC(J ,X ).
Set κ = 1, then the set solutions will be defined as S(F) = {x ∈ PC(J ,X ) : x = Fx, }. For

each x1, x2 ∈ S(F), λ ∈ [0, 1] and t ∈ J , then by definition of F , we have

λx1(t) + (1− λ)x2(t) = λ(Fx1)(t) + (1− λ)(Fx2)(t)

= λ[x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1ξ(s, x1(s))ds+
1

Γ(q)

∫ t

tk

(t− s)q−1ξ(s, x1(s))ds

+
∑

0<tk<t

Ik(x1(tk))] + (1− λ)[x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1ξ(s, x2(s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1ξ(s, x2(s))ds+
∑

0<tk<t

Ik(x2(tk))]



IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS BY TOPOLOGICAL METHOD 23

= x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1[λξ(s, x1(s)) + (1− λ)ξ(s, x2(s))]ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1[λξ(s, x1(s)) + (1− λ)ξ(s, x2(s))]ds

+
∑

0<tk<t

[λIk(x1(tk)) + (1− λ)Ik(x2(tk))]

= x0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1ξ(s, [λx1 + (1− λ)x2](s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1ξ(s, [λx1 + (1− λ)x2](s))ds+
∑

0<tk<t

Ik([λx1 + (1− λ)x2](tk))

Thus,

[λx1 + (1− λ)x2](t) = (F [λx1 + (1− λ)x2])(t)

Therefore, λx1 + (1 − λ)x2 ∈ S(F) which implies S(F) is convex. Hence, the set solutions

of ICP(1.1) is convex. �

Theorem 3.3. Assume that [H1]−[H5] hold, then the fractional ICP(1.1) has a unique solution

on PC(J ,X ).

Proof. It can be easily shown that F is a contraction mapping on PC(J ,X ) by [H2] and [H4]

as follows, for arbitrary x, y ∈ PC(J ,X ), we have

‖(Fx)(t)− (Fy)(t)‖ ≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖ξ(s, x(s))− ξ(s, y(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖ξ(s, x(s))− ξ(s, y(s))‖ds+
∑

0<tk<t

‖Ik(x(tk))− Ik(y(tk))‖

≤ 1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1δξ‖x− y‖ds+ 1

Γ(q)

∫ t

tk

(t− s)q−1δξ‖x− y‖ds

+
∑

0<tk<t

γI‖x− y‖, k = 1, 2, ...,m

‖(Fx)(t)− (Fy)(t)‖ ≤ [
(m+ 1)δξT

q

Γ(q + 1)
+mγI ]‖x− y‖

Thus, F is a contraction mapping on PC(J ,X ) with a contraction constant [
(m+1)δξT

q

Γ(q+1) +mγI ]

. By applying the Banach’s contraction mapping principle we deduce that the operator F
has a unique fixed point on PC(J ,X ). Therefore, the ICP(1.1) has a unique solution which

completes the proof. �



24 T. A. FAREE AND S. K. PANCHAL

Example 3.1. Consider the following fractional ICP







cD 2

3x(t) = |x(t)|
(1+et)(1+|x(t)|) , t ∈ [0, 1]\{1

2},
x(0) = 0,

∆x(12) =
1
9 |x(12)|.

(3.2)

Set q = 2
3 , for (t, x) ∈ [0, 1] × [0,+∞), we can define ξ(t, x) = x

(1+et)(1+x) . Also, for

t ∈ [0, 1] we have x(t) = 1
1+et , and Ik(x(tk)) =

1
9x(

1
2), K = 1. By Theorem (3.1), we have

|ξ(t, x)− ξ(t, y)| = 1

(1 + et)
| x

1 + x
− y

1 + y
|, t ∈ [0, 1]

≤ 1

2
| x− y

(1 + x)(1 + y)
|

≤ 1

2
|x− y| ⇒ δξ =

1

2

And,

|ξ(t, x)| = | x

(1 + et)(1 + x)
|, t ∈ [0, 1]

≤ 1

2
| x

1 + x
| ≤ 1

2
|x| ⇒ δ1 =

1

2
, q1 = 1, δ2 = 0

Next,

|I(x)− I(y)| = 1

9
|x(1

2
)− y(

1

2
)| ⇒ γI =

1

9
,

|I(x)| = 1

9
|x(1

2
)| ⇒ γ1 =

1

9
, q2 = 1, γ2 = 0

Obviously, it is not difficult to see that all assumptions in Theorem (3.1) are satisfied. There-

fore, our results can be used to solve the problem (3.2).

CONCLUSION

We established sufficient conditions for existence of a solution for the ICP(1.1) by using

Schaefer’s fixed point theorem, Banach contraction mapping principle besides to topological

technique of approximate solutions. Moreover, we studied some of topological properties for

the set of solutions. Finally, an example was presented to clarify our results.
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