• Title/Summary/Keyword: Set functions

Search Result 1,681, Processing Time 0.023 seconds

On the Correlation Immune Functions and their Nonlinearity (상관면역 함수와 비선형치)

  • Sung, Soo-Hak;Chee, Seong-Taek;Lee, Sang-Jin;Kim, Kwang-Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.3
    • /
    • pp.11-22
    • /
    • 1996
  • In this paper, we consider the relationship between the nonlinearity and correlation immunity of functions suggested in [1], [3]. For the analysis of such functions, we present a simple method of generating the same set of functions, which makes us possible to construct correlation immune functions with controllable correlation immunity and nonlinearity.

SOME RELATIONS ON PARAMETRIC LINEAR EULER SUMS

  • Weiguo Lu;Ce Xu;Jianing Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.985-1001
    • /
    • 2023
  • Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums S++p,q (a, b) and S+-p,q (a, b) defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.

On Near Subtraction Semigroups (Near Subtraction Semigroups에 관한 연구)

  • Yon Yong-Ho;Kim Mi-Suk;Kim Mi-Hye
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.406-410
    • /
    • 2003
  • B. M. Schein([1]) considered systems of the form (${\Phi}$; ${\circ}$,-), where ${\Phi}$ is a set of functions closed under the composition "${\circ}$" of functions and the set theoretic subtraction "-". In this structure, (${\Phi}$; ${\circ}$) is a function semigroup and (${\Phi}$;-) is a subtraction algebra in the sense of [1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Also this structure is closely related to the mathematical logic, Boolean algebra, Bck-algera, etc. In this paper, we define the near subtraction semigroup as a generalization of the subtraction semigroup, and define the notions of strong for it, and then we will search the general properties of this structure, the properties of ideals, and the application of it.

  • PDF

SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS

  • Khodkar, Abdollah;Sheikholeslami, S.M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.551-563
    • /
    • 2011
  • Let ${\kappa}$ be a positive integer and let G be a simple graph with vertex set V(G). A function f : V (G) ${\rightarrow}$ {-1, 1} is called a signed total ${\kappa}$-dominating function if ${\sum}_{u{\in}N({\upsilon})}f(u){\geq}{\kappa}$ for each vertex ${\upsilon}{\in}V(G)$. A set ${f_1,f_2,{\ldots},f_d}$ of signed total ${\kappa}$-dominating functions of G with the property that ${\sum}^d_{i=1}f_i({\upsilon}){\leq}1$ for each ${\upsilon}{\in}V(G)$, is called a signed total ${\kappa}$-dominating family (of functions) of G. The maximum number of functions in a signed total ${\kappa}$-dominating family of G is the signed total k-domatic number of G, denoted by $d^t_{kS}$(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total signed total ${\kappa}$-domatic numbers of complete graphs and complete bipartite graphs.

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV

  • Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.211-224
    • /
    • 2019
  • This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control.

A UNIFORM LAW OF LARGE MUNBERS FOR PRODUCT RANDOM MEASURES

  • Kil, Byung-Mun;Kwon, Joong-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1995
  • Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.

  • PDF

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

Cube selection using function complexity and minimizatio of two-level reed-muller expressions (함수복잡도를 이용한 큐브선택과 이단계 리드뮬러표현의 최소화)

  • Lee, Gueesang
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.104-110
    • /
    • 1995
  • In this paper, an effective method for the minimization of two-level Reed-muller expressions by cube selection whcih considers functional complexity is presented. In contrast to the previous methods which use Xlinking operations to join two cubes for minimizatio, the cube selection method tries to select cubes one at a time until they cover the ON-set of the given function. This method works for most benchmark circuits, but for parity-type functions it shows power performance. To solve this problem, a cost function which computes the functional complexity instead of only the size of ON-set of the function is used. Therefore the optimization is performed considering how the trun minterms are grouped together so that they can be realized by only a small number of cubes. In other words, it considers how the function is changed and how the change affects the next optimization step. Experimental results shows better performance in many cases including parity-type functions compared to pervious results.

  • PDF

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.