SIGNED TOTAL *k*-DOMATIC NUMBERS OF GRAPHS

Abdollah Khodkar and S. M. Sheikholeslami

ABSTRACT. Let k be a positive integer and let G be a simple graph with vertex set V(G). A function $f: V(G) \longrightarrow \{-1,1\}$ is called a signed total k-dominating function if $\sum_{u \in N(v)} f(u) \ge k$ for each vertex $v \in V(G)$. A set $\{f_1, f_2, \ldots, f_d\}$ of signed total k-dominating functions of G with the property that $\sum_{i=1}^d f_i(v) \le 1$, for each $v \in V(G)$, is called a signed total k-dominating family (of functions) of G. The maximum number of functions in a signed total k-dominating family of G is the signed total k-domatic number of G, denoted by $d_{kS}^t(G)$. In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total k-domatic numbers of complete graphs and complete bipartite graphs.

1. Introduction

In this paper, G is a finite simple graph with vertex set V(G) and edge set E(G). For a vertex $v \in V(G)$, the open neighborhood N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the open neighborhood N(S) of a set $S \subseteq V(G)$ is the set $\bigcup_{v \in S} N(v)$. The minimum degree of G, denoted by $\delta(G)$, is min $\{|N(v)| \mid$ $v \in V(G)\}$. Consult [5] for the notation and terminology which are not defined here.

For a real-valued function $f: V(G) \longrightarrow \mathbb{R}$, the weight of f is $w(f) = \sum_{v \in V} f(v)$. For $S \subseteq V$, we define $f(S) = \sum_{v \in S} f(v)$. So w(f) = f(V). Let $k \ge 1$ be an integer and let G be a graph with $\delta(G) \ge k$. A signed total k-dominating function (STkDF) is a function $f: V(G) \rightarrow \{-1,1\}$ satisfying $\sum_{u \in N(v)} f(u) \ge k$ for every $v \in V(G)$. The minimum of the values of $\sum_{v \in V(G)} f(v)$, taken over all signed total k-dominating functions f, is called the signed total k-domination number and is denoted by $\gamma_{kS}^t(G)$. As assumption $\delta(G) \ge k$ is clearly necessary, we will always assume that when we discuss $\gamma_{kS}^t(G)$ all graphs involved satisfy $\delta(G) \ge k$. In the special case when k = 1,

O2011 The Korean Mathematical Society

Received January 20, 2010; Revised April 8, 2010.

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. signed total k-domatic number, signed total k-dominating function, signed total k-domination number.

 $\gamma_{kS}^t(G)$ is the signed total domination number investigated in [2, 6]. The signed total k-domination numbers of graphs was introduced by Wang [4].

A set $\{f_1, f_2, \ldots, f_d\}$ of signed total k-dominating functions on G with $\sum_{i=1}^d f_i(v) \leq 1$, for each $v \in V(G)$, is called a signed total k-dominating family (STkD family) of G. The maximum number of functions in a signed total k-dominating family on G is the signed total k-domatic number of G, denoted by $d_{kS}^t(G)$. The signed total k-domatic number is well-defined and $d_{kS}^t(G) \geq 1$ for all graphs G in which $\delta(G) \geq k$, since the set consisting of any one STkD function forms a STkD family of G. A d_{kS}^t -family of a graph G is a STkD family consists of $d_{kS}^t(G)$ STkD functions. The signed total 1-domatic number $d_{1S}^t(G)$ is the usual signed total domatic number $d_{S}^t(G)$, which was introduced by Henning in [3] and has been studied by several authors (see for example [1]).

In this note, we first study some basic properties of $d_{kS}^t(G)$ and find some sharp upper bounds for this parameter. Then we determine the signed total k-domatic numbers of complete graphs and of complete bipartite graphs, generalizing Propositions A and B.

We make use of the following results and observations in this paper.

Proposition A ([3]). If $G = K_n$ is the complete graph of order $n \ge 2$, then $\left(\lfloor \frac{n+1}{2} \rfloor - \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor - \inf n \text{ is odd,} \right)$

(1)
$$d_S^t(K_n) = \begin{cases} \lfloor a \rfloor & \exists a \rfloor + \lfloor a \rfloor & \exists a \rfloor & \forall a \end{pmatrix} \quad \text{is ouu,} \\ \frac{n}{2} - \lceil \frac{n+2}{4} \rceil + \lfloor \frac{n+2}{4} \rfloor & \text{if } n \text{ is even.} \end{cases}$$

Proposition B ([3]). For $m \ge n \ge 1$, (2)

$$d_{S}^{t}(K_{m,n}) = \begin{cases} n & \text{if } n \text{ and } m \text{ are odd,} \\\\ \min\{n, \frac{m}{2} - \lceil \frac{m+2}{4} \rceil + \lfloor \frac{m+2}{4} \rfloor\} & \text{if } n \text{ is odd and } m \text{ is even,} \\\\\\ \frac{n}{2} - \lceil \frac{n+2}{4} \rceil + \lfloor \frac{n+2}{4} \rfloor & \text{if } n \text{ is even.} \end{cases}$$

Observation 1. Let G be a graph of order n and $k \in \{n-2, n-1\}$. Then $\gamma_{kS}^t(G) = n$ and hence, $d_{kS}^t(G) = 1$.

Observation 2. Let G be a graph of order n. Then $\gamma_{kS}^t(G) = n$ if and only if $k \leq \delta(G) \leq k+1$ and for each $v \in V(G)$ there exists a vertex $u \in N(v)$ such that $\deg(u) = k$ or $\deg(u) = k+1$.

Proof. If $k \leq \delta(G) \leq k+1$ and for each $v \in V(G)$ there exists a vertex $u \in N(v)$ such that $\deg(u) = k$ or $\deg(u) = k+1$, then trivially $\gamma_{kS}^t(G) = n$.

Conversely, assume that $\gamma_{kS}^t(G) = n$. By assumption $k \leq \delta(G)$. Let, to the contrary, $\delta(G) > k+1$ or there exists a vertex $v \in V(G)$ such that $\deg(u) \geq k+2$ for each $u \in N(v)$. If $\delta(G) > k+1$, define $f: V(G) \to \{-1, 1\}$ by f(v) = -1 for some fixed v and f(x) = 1 for $x \in V(G) \setminus \{v\}$. Obviously, f is a signed total k-dominating function of G with weight less than n, which is a contradiction. Thus $k \leq \delta(G) \leq k+1$. Now let $v \in V(G)$ and $\deg(u) \geq k+2$ for each $u \in N(v)$.

Define $f: V(G) \to \{-1, 1\}$ by f(v) = -1 and f(x) = 1 for $x \in V(G) \setminus \{v\}$. Again, f is a signed total k-dominating function of G, which is a contradiction. This completes the proof.

The following theorem generalizes the result on $\gamma_{k,S}^t(K_{n,n})$ obtained in [4].

Theorem 3. Let $k \ge 1$ be an integer. Then for every integers $m, n \ge k$,

(3)
$$\gamma_{kS}^t(K_{m,n}) = \begin{cases} 2k & \text{if } m \equiv n \equiv k \pmod{2} \\ 2k+1 & \text{if } m \equiv k+1 \pmod{2}, n \equiv k \pmod{2} \\ 2k+2 & \text{if } m \equiv n \equiv k+1 \pmod{2}. \end{cases}$$

Proof. Let the partite sets of a $K_{m,n}$ be $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$. We consider three cases.

Case 1. $m \equiv n \equiv k \pmod{2}$. First note that if f is a STkDF of $K_{m,n}$, then $\sum_{i=1}^{m} f(x_i) \geq k$ and $\sum_{i=1}^{n} f(y_i) \geq k$, which implies $\gamma_{kS}^t(K_{m,n}) \geq 2k$. Label $\frac{m+k}{2}$ vertices of X with +1 and the rest with -1. Similarly, label $\frac{n+k}{2}$ vertices of Y with +1 and the rest with -1. It is clear that this labeling defines a STkDF, say f, of $K_{m,n}$. Since f(N(v)) = k for every vertex $v \in (X \cup Y)$, it follows that $\gamma_{kS}^t(K_{m,n}) = w(f) = 2k$.

Case 2. $m \equiv k + 1 \pmod{2}$, $n \equiv k \pmod{2}$. First note that if f is a STkDF of $K_{m,n}$, then $\sum_{i=1}^{m} f(x_i) \geq k + 1$ and $\sum_{i=1}^{n} f(y_i) \geq k$ since $m \equiv k + 1 \pmod{2}$. Label $\frac{m+k+1}{2}$ vertices of X with +1 and the rest with -1. Similarly, label $\frac{n+k}{2}$ vertices of Y with +1 and the rest with -1. It is clear that this labeling defines a STkDF, say f, of $K_{m,n}$. Since f(N(y)) = k + 1 for every vertex $y \in Y$ and f(N(x)) = k for every $x \in X$, it follows that $\gamma_{kS}^{t}(K_{m,n}) = w(f) = 2k + 1$.

Case 3. $m \equiv n \equiv k+1 \pmod{2}$. First note that if f is a STkDF of $K_{m,n}$, since $m \equiv n \equiv k+1 \pmod{2}$, $\sum_{i=1}^{m} f(x_i) \geq k+1$ and $\sum_{i=1}^{n} f(y_i) \geq k+1$. Label $\frac{m+k+1}{2}$ vertices of X with +1 and the rest with -1. Similarly, label $\frac{n+k+1}{2}$ vertices of Y with +1 and the rest with -1. It is clear that this labeling defines a STkDF, say f, of $K_{m,n}$. Since f(N(v)) = k+1 for every vertex $v \in (X \cup Y)$, it follows that $\gamma_{kS}^t(K_{m,n}) = w(f) = 2k+2$.

2. Basic properties and upper bounds

In this section we present basic properties of the signed total k-domatic number and find some sharp upper bounds for this parameter. Our first result is obtained by the definition of the signed total k-domatic number.

Theorem 4. Let G be a graph of order n and $\delta(G) \geq k > 0$. Then $\gamma_{kS}^t(G) \cdot d_{kS}^t(G) \leq n$. Moreover if $\gamma_{kS}^t(G) \cdot d_{kS}^t(G) = n$, then for each $d = d_{kS}^t$ -family $\{f_1, \ldots, f_d\}$ of G each function f_i is a γ_{kS}^t -function and $\sum_{i=1}^d f_i(v) = 1$ for all $v \in V$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STkD family of G such that $d = d_{kS}^t(G)$ and let $v \in V$. Then

$$d \cdot \gamma_{kS}^t(G) = \sum_{i=1}^d \gamma_{kS}^t(G)$$

$$\leq \sum_{i=1}^d \sum_{v \in V} f_i(v)$$

$$= \sum_{v \in V} \sum_{i=1}^d f_i(v)$$

$$\leq \sum_{v \in V} 1$$

$$= n.$$

If $\gamma_{kS}^t(G) \cdot d_{kS}^t(G) = n$, then the two inequalities occurring in the proof become equalities. Hence, for the d_{kS}^t -family $\{f_1, \ldots, f_d\}$ of G and for each i, $\sum_{v \in V} f_i(v) = \gamma_{kS}^t(G)$, thus each function f_i is a γ_{kS}^t -function, and $\sum_{i=1}^d f_i(v) =$ 1 for all v.

Corollary 5. If G is a graph of order n, then $\gamma_{kS}^t(G) + d_{kS}^t(G) \le n+1$.

Proof. By Theorem 4,

(4)
$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le d_{kS}^t(G) + \frac{n}{d_{kS}^t(G)}.$$

Using the fact that the function g(x) = x + n/x is decreasing for $1 \le x \le \sqrt{n}$ and increasing for $\sqrt{n} \le x \le n$, this inequality leads to the desired bound immediately.

Corollary 6. Let G be a graph of order $n \ge 4$. If $2 \le \gamma_{kS}^t(G) \le n-1$, then

$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le n$$

Proof. Theorem 4 implies that

(5)
$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le \gamma_{kS}^t(G) + \frac{n}{\gamma_{kS}^t(G)}$$

If we define $x = \gamma_{kS}^t(G)$ and g(x) = x + n/x for x > 0, then because $2 \le \gamma_{kS}^t(G) \le n - 1$, we have to determine the maximum of the function g on the interval $I: 2 \le x \le n - 1$. It is easy to see that

$$\max_{x \in I} \{g(x)\} = \max\{g(2), g(n-1)\} \\ = \max\{2 + \frac{n}{2}, n-1 + \frac{n}{n-1}\} \\ = n - 1 + \frac{n}{n-1} < n+1,$$

and we obtain $\gamma_{kS}^t(G) + d_{kS}^t(G) \leq n$. This completes the proof.

Corollary 7. Let G be a graph of order n and let $k \ge 1$ be an integer. If $\min\{\gamma_{kS}^t(G), d_{kS}^t(G)\} \ge 2$, then

$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le \frac{n}{2} + 2.$$

Proof. Since $\min\{\gamma_{kS}^t(G), d_{kS}^t(G)\} \geq 2$, it follows by Theorem 4 that $2 \leq d_{kS}^t(G) \leq \frac{n}{2}$. By (4) and the fact that the maximum of g(x) = x + n/x on the interval $2 \leq x \leq n/2$ is g(2) = g(n/2), we see that

$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le d_{kS}^t(G) + \frac{n}{d_{kS}^t(G)} \le \frac{n}{2} + 2.$$

Observation 1 shows that Corollary 7 is no longer true if $\min\{\gamma_{kS}^t(G), d_{kS}^t(G)\} = 1$.

Theorem 8. The signed total k-domatic number of a graph is an odd integer.

Proof. Let G be a graph, and suppose that $d = d_{kS}^t(G)$ is even. Let $\{f_1, f_2, \ldots, f_d\}$ be the corresponding signed total k-dominating family of G. If $u \in V(G)$, then $\sum_{i=1}^d f_i(u) \leq 1$. But on the left-hand side of this inequality, a sum of an even number of odd summands occurs. Therefore it is an even number, and we obtain $\sum_{i=1}^d f_i(u) \leq 0$ for each $u \in V(G)$. This forces

$$d = \sum_{i=1}^{d} 1 \\ \leq \sum_{i=1}^{d} (\frac{1}{k} \sum_{u \in N(v)} f_i(u)) \\ = \frac{1}{k} \sum_{u \in N(v)} \sum_{i=1}^{d} f_i(u) \\ \leq 0,$$

which is a contradiction.

Theorem 9. Let G be a graph and $v \in V(G)$. Then

$$d_{kS}^t(G) \leq \begin{cases} \frac{\deg(v)}{k} & \text{if } \deg(v) \equiv k \pmod{2} \\ \frac{\deg(v)}{k+1} & \text{if } \deg(v) \equiv k+1 \pmod{2}. \end{cases}$$

Moreover, if the equality holds, then for each function f_i of a STkD family $\{f_1, f_2, \ldots, f_d\}$ and for every $u \in N(v)$, $\sum_{u \in N(v)} f_i(u) = k$ if $\deg(v) \equiv k$ (mod 2), $\sum_{u \in N(v)} f_i(u) = k+1$ if $\deg(v) \equiv k+1 \pmod{2}$ and $\sum_{i=1}^d f_i(u) = 1$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STkD family of G such that $d = d_{kS}^t(G)$. If $\deg(v) \equiv k \pmod{2}$, then

$$d = \sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k} \sum_{u \in N(v)} f_i(u) \\ = \frac{1}{k} \sum_{u \in N(v)} \sum_{i=1}^{d} f_i(u) \leq \frac{1}{k} \sum_{u \in N(v)} 1 \\ = \frac{\deg(v)}{2}.$$

Similarly, if $\deg(v) \equiv k + 1 \pmod{2}$, then

$$d = \sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k+1} \sum_{u \in N(v)} f_i(u)$$

= $\frac{1}{k+1} \sum_{u \in N(v)} \sum_{i=1}^{d} f_i(u) \leq \frac{1}{k+1} \sum_{u \in N(v)} 1$
= $\frac{\deg(v)}{k+1}$.

If $d_{kS}^t(G) = \frac{\deg(v)}{k}$ when $\deg(v) \equiv k \pmod{2}$ or $d_{kS}^t(G) = \frac{\deg(v)}{k+1}$ when $\deg(v) \equiv k+1 \pmod{2}$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement.

Corollary 10. Let G be a graph and $1 \le k \le \delta(G)$. Then

$$d_{kS}^t(G) \le \begin{cases} \frac{\delta(G)}{k} & \text{if } \delta(G) \equiv k \pmod{2} \\ \frac{\delta(G)}{k+1} & \text{if } \delta(G) \equiv k+1 \pmod{2}. \end{cases}$$

Corollary 11. Let $1 \le k \le n \le m$ be integers. Then

$$d_{kS}^{t}(K_{n,m}) \leq \begin{cases} \min\{\frac{n}{k}, \frac{m}{k+1}\} & if \quad n \equiv k \pmod{2} \text{ and } m \not\equiv n \pmod{2} \\ \frac{n}{k} & if \quad n \equiv k \pmod{2} \text{ and } m \equiv n \pmod{2} \\ \frac{n}{k+1} & if \quad n \equiv k+1 \pmod{2}. \end{cases}$$

The next two results are immediate consequences of Theorems 8 and 9.

Corollary 12. For any tree T, $d_S^t(T) = 1$.

Corollary 13. If C_n is the cycle on *n* vertices, then $d_S^t(C_n) = d_{2S}^t(C_n) = 1$.

Corollary 14. Let G be a graph of order n. Then $\gamma_{kS}^t(G) + d_{kS}^t(G) = n + 1$ if and only if $k \leq \delta(G) \leq k + 1$ and for each $v \in V(G)$ there exists a vertex $u \in N(v)$ such that $\deg(u) = k$ or $\deg(u) = k + 1$.

Proof. If $k \leq \delta(G) \leq k+1$ and for each $v \in V(G)$ there exists a vertex $u \in N(v)$ such that $\deg(u) = k$ or $\deg(u) = k+1$, then $\gamma_{kS}^t(G) = n$ by Observation 2. Hence, $d_{kS}(G) = 1$ and the result follows.

Conversely, let $\gamma_{kS}^t(G) + d_{kS}^t(G) = n+1$. The result is obviously true for n = 2, 3. Assume $n \ge 4$. By Corollary 7, we may assume $\min\{\gamma_{kS}^t(G), d_{kS}^t(G)\} = 1$. If $\gamma_{kS}^t(G) = 1$, then $d_{kS}^t(G) = n$, which is a contradiction by Theorem 9. If $d_{kS}^t(G) = 1$, then $\gamma_{kS}^t(G) = n$ and the result follows by Observation 2.

Theorem 15. For every graph G of order n and $1 \le k \le \min\{\delta(G), \delta(\overline{G})\},\$

(6)
$$d_{kS}^t(G) + d_{kS}^t(\overline{G}) \le \frac{n-1}{k},$$

and equality in (6) implies that G is a regular graph.

Proof. Since $\delta(G) + \delta(\overline{G}) \leq n - 1$, by Corollary 10

$$d_{kS}(G) + d_{kS}(\overline{G}) \le \frac{\delta(\overline{G})}{k} + \frac{\delta(\overline{G})}{k} \le \frac{n-1}{k}.$$

If G is not regular, then $\delta(G) + \delta(\overline{G}) \le n-2$, hence $d_{kS}^t(G) + d_{kS}^t(\overline{G}) \le \frac{n-2}{k}$. \Box

3. The signed total k-domatic number of complete graphs

In this section, we determine the value of signed total k-domatic number of a complete graph. First we determine the signed total k-domination number of K_n .

Lemma 16 ([4]). *For* $n \ge 2$,

(7)
$$\gamma_{kS}^t(K_n) = \begin{cases} k+2 & n \equiv k \pmod{2} \\ k+1 & n \equiv k+1 \pmod{2} \end{cases}$$

Proof. Assume $V(K_n) = \{v_1, \ldots, v_n\}$ is the vertex set of K_n . Suppose that f is a signed total k-dominating function of K_n and f(v) = 1 for some $v \in V(G)$. If $n \equiv k \pmod{2}$, then $f(N(v)) \ge k+1$ and hence, $f(V(G)) = f(v) + f(N(v)) \ge k+2$. Thus $\gamma_{kS}^t(K_n) \ge k+2$. Now define $f : V(K_n) \to \{-1, 1\}$ by $f(v_i) = -1$ for $1 \le i \le \frac{n-k}{2} - 1$ and $f(v_i) = 1$ when $\frac{n-k}{2} \le i \le n$. It is easy to see that f is a signed total k-dominating function on K_n with $f(V(K_n)) = k+2$.

If $n \equiv k + 1 \pmod{2}$, then $f(V(G)) = f(v) + f(N(v)) \ge k + 1$ and hence, $\gamma_{kS}^t(K_n) \ge k + 1$. Now define $f : V(K_n) \to \{-1, 1\}$ by $f(v_i) = -1$ for $1 \le i \le \frac{n-k-1}{2}$ and $f(v_i) = 1$ when $\frac{n-k+1}{2} \le i \le n$. It is easy to see that f is a signed total k-dominating function on K_n with $f(V(K_n)) = k + 1$. This completes the proof. \Box

The next result is a generalization of Proposition A.

Theorem 17. For $n \geq 2$,

$$d_{kS}^{t}(K_{n}) = \begin{cases} \lfloor \frac{n}{k+2} \rfloor & \text{if } n \equiv k \pmod{2} \text{ and } \lfloor \frac{n}{k+2} \rfloor \text{ is odd} \\ \lfloor \frac{n}{k+2} \rfloor - 1 & \text{if } n \equiv k \pmod{2} \text{ and } \lfloor \frac{n}{k+2} \rfloor \text{ is even} \\ \lfloor \frac{n}{k+1} \rfloor & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor \text{ is odd} \\ \lfloor \frac{n}{k+1} \rfloor - 1 & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor \text{ is even.} \end{cases}$$

Proof. By Lemma 16 and Observation 1 we may assume $k \leq n-3$. Let $V(K_n) = \{x_0, x_1, \ldots, x_{n-1}\}$ be the vertex set of K_n . We consider two cases. **Case 1.** $n \equiv k \pmod{2}$. Suppose that n = (k+2)q + r, where q is a positive integer and $0 \leq r \leq k+1$. By Lemma 16, $\gamma_{kS}^t(K_n) = k+2$. Hence, by Theorems 4 and 8, $d_{kS}^t(K_n) \leq q$ if q is odd and $d_{kS}^t(K_n) \leq q-1$ if q is even.

Subcase 1.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+2)(q-1)}{2} + k + 1, \\ f_1(x_i) = -1 \quad \text{if} \quad \frac{(k+2)(q-1)}{2} + k + 2 \le i \le (k+2)q - 1$$

and for $2 \le j \le q$ and $0 \le i \le (k+2)q - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+2)}),$$

where the sum is taken modulo (k+2)q. In addition, if r > 0,

 $f_j(x_i) = (-1)^{i+j}$ for $1 \le j \le q$ and $(k+2)q \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of K_n for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed total k-dominating family of K_n . Hence $d_{kS}^t(K_n) \geq q$. Therefore $d_{kS}^t(K_n) = q$, as desired.

Subcase 1.2 q is even. Then r + k + 2 is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = 1$$
 if $0 \le i \le \frac{(k+2)(q-2)}{2} + k + 1$,

 $f_1(x_i) = -1$ if $\frac{(k+2)(q-2)}{2} + k + 2 \le i \le (k+2)(q-1) - 1$

and for $2 \le j \le q - 1$ and $0 \le i \le (k + 2)(q - 1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+2)}),$$

where the sum is taken modulo (k+2)(q-1). In addition,

$$f_j(x_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+2)(q-1) \le i \le n-1$

It is easy to see that f_j is a signed total k-dominating function of K_n for each $1 \leq j \leq q-1$ and $\{f_1, \ldots, f_{q-1}\}$ is a signed total k-dominating family on K_n . Hence, $d_{kS}^t(K_n) \geq q-1$ and so $d_{kS}^t(K_n) = q-1$, as desired.

Case 2. $n \equiv k + 1 \pmod{2}$. Suppose that n = (k + 1)q + r, where q is a positive integer and $0 \leq r \leq k$. By Lemma 16, $\gamma_{kS}^t(K_n) = k + 1$. Hence, by Theorems 4 and 8, $d_{kS}^t(K_n) \leq q$ if q is odd and $d_{kS}^t(K_n) \leq q - 1$ if q is even.

Subcase 2.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$\begin{aligned} f_1(x_i) &= 1 & \text{if} & 0 \leq i \leq \frac{(k+1)(q-1)}{2} + k, \\ f_1(x_i) &= -1 & \text{if} & \frac{(k+1)(q-1)}{2} + k + 1 \leq i \leq (k+1)q - 1 \end{aligned}$$

and for $2 \le j \le q$ and $0 \le i \le (k+1)q - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)}),$$

where the sum is taken modulo (k+1)q. In addition, if r > 0,

$$f_j(x_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)q \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of K_n for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed total k-dominating family of K_n . Hence, $d_{kS}^t(K_n) \geq q$. Therefore $d_{kS}^t(K_n) = q$, as desired.

Subcase 2.2 q is even. Then r + k + 1 is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-2)}{2} + k, \\ f_1(x_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-2)}{2} + k + 1 \le i \le (k+1)(q-1) - 1$$

and for $2 \le j \le q - 1$ and $0 \le i \le (k + 1)(q - 1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)}),$$

where the sum is taken modulo (k+1)(q-1). In addition,

 $f_j(x_i) = (-1)^{i+j}$ for $1 \le j \le q$ and $(k+1)(q-1) \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of K_n for each $1 \leq j \leq q-1$ and $\{f_1, \ldots, f_{q-1}\}$ is a signed total k-dominating family of K_n . Hence, $d_{kS}^t(K_n) \geq q-1$ and so $d_{kS}^t(K_n) = q-1$, as desired.

4. The signed total k-domatic number of $K_{n,m}$

In this section, we first determine the signed total k-domatic numbers for complete bipartite graphs $K_{n,n}$. Then we use this result to find the signed total k-domatic numbers for complete bipartite graphs $K_{n,m}$. This generalizes Proposition B for $k \geq 1$.

Theorem 18. For $n \ge 1$,

$$d_{kS}^{t}(K_{n,n}) = \begin{cases} \lfloor \frac{n}{k} \rfloor & \text{if } n \equiv k \pmod{2} \text{ and } \lfloor \frac{n}{k} \rfloor & \text{is odd,} \\ \lfloor \frac{n}{k} \rfloor - 1 & \text{if } n \equiv k \pmod{2} \text{ and } \lfloor \frac{n}{k} \rfloor & \text{is even,} \\ \lfloor \frac{n}{k+1} \rfloor & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor & \text{is odd,} \\ \lfloor \frac{n}{k+1} \rfloor - 1 & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor & \text{is even.} \end{cases}$$

Proof. By Theorem 3 and Observation 1, we may assume $k \leq n-2$. Let $X = \{x_0, x_1, \ldots, x_{n-1}\}$ and $Y = \{y_0, y_1, \ldots, y_{n-1}\}$ be the partite sets of $K_{n,n}$. We consider two cases.

Case 1. $n \equiv k \pmod{2}$. Suppose that n = kq + r, where q is a positive integer and $0 \leq r < k$. By Theorem 3, $\gamma_{kS}^t(K_{n,n}) = 2k$. Hence, by Theorems 4 and 8, $d_{kS}^t(K_{n,n}) \leq q$ if q is odd and $d_{kS}^t(K_{n,n}) \leq q - 1$ if q is even.

Subcase 1.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{k(q-1)}{2} + k - 1,$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{k(q-1)}{2} + k \le i \le kq - 1$$

and for $2 \le j \le q$ and $0 \le i \le kq - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2k})$$
 and $f_j(y_i) = f_{j-1}(y_{i+2k})$,

where the sum is taken modulo kq. In addition, if r > 0,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $kq \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of $K_{n,n}$ for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed total k-dominating family of $K_{n,n}$. Hence $d_{kS}^t(K_{n,n}) \geq q$. Therefore $d_{kS}^t(K_{n,n}) = q$, as desired.

Subcase 1.2 q is even. Then r+k is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{k(q-2)}{2} + k - 1, \\ f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{k(q-2)}{2} + k \le i \le k(q-1) - 1$$

and for $2 \le j \le q - 1$ and $0 \le i \le k(q - 1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2k})$$
 and $f_j(y_i) = f_{j-1}(y_{i+2k})$

where the sum is taken modulo k(q-1). In addition,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $k(q-1) \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of $K_{n,n}$ for each $1 \leq j \leq q-1$ and $\{f_1, \ldots, f_{q-1}\}$ is a signed total k-dominating family on $K_{n,n}$. Hence, $d_{kS}^t(K_{n,n}) \geq q-1$ and so $d_{kS}^t(K_{n,n}) = q-1$ as desired.

Case 2. $n \neq k \pmod{2}$. Then $n \equiv k+1 \pmod{2}$. Suppose that n = (k+1)q + r, where q is a positive integer and $0 \leq r \leq k$. By Theorem 3, $\gamma_{kS}^t(K_{n,n}) = 2(k+1)$. Hence, by Theorems 4 and 8, $d_{kS}^t(K_{n,n}) \leq q$ if q is odd and $d_{kS}^t(K_{n,n}) \leq q-1$ if q is even.

Subcase 2.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-1)}{2} + k,$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-1)}{2} + k + 1 \le i \le (k+1)q - 1$$

and for $2 \leq j \leq q$ and $0 \leq i \leq (k+1)q - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)})$$
 and $f_j(y_i) = f_{j-1}(y_{i+2(k+1)}),$

where the sum is taken modulo (k+1)q. In addition, if r > 0,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)q \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of $K_{n,n}$ for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed total k-dominating family of $K_{n,n}$. Hence, $d_{kS}^t(K_{n,n}) \geq q$. Therefore $d_{kS}^t(K_{n,n}) = q$, as desired.

Subcase 2.2 q is even. Then r + k + 1 is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-2)}{2} + k,$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-2)}{2} + k + 1 \le i \le (k+1)(q-1) - 1$$

and for $2 \le j \le q - 1$ and $0 \le i \le (k + 1)(q - 1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)})$$
 and $f_j(y_i) = f_{j-1}(y_{i+2(k+1)}),$

where the sum is taken modulo (k+1)(q-1). In addition,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)(q-1) \le i \le n-1$.

It is easy to see that f_j is a signed total k-dominating function of $K_{n,n}$ for each $1 \leq j \leq q-1$ and $\{f_1, \ldots, f_{q-1}\}$ is a signed total k-dominating family of $K_{n,n}$. Hence, $d_{kS}^t(K_{n,n}) \geq q-1$ and so $d_{kS}^t(K_{n,n}) = q-1$, as desired.

Now we are ready to prove the main theorem of this section.

Theorem 19. Let $1 \leq k \leq n \leq m$ be integers. If $m \equiv n \pmod{2}$, then $d_{kS}^t(K_{n,m}) = d_{kS}^t(K_{n,n})$. If $m \not\equiv n \pmod{2}$, then $d_{kS}^t(K_{n,m})$

$$= \begin{cases} \lfloor \frac{n}{k} \rfloor & \text{if } n \equiv k \pmod{2}, \lfloor \frac{n}{k} \rfloor \leq \lfloor \frac{m}{k+1} \rfloor \text{ and } \lfloor \frac{n}{k} \rfloor \text{ is odd,} \\ \lfloor \frac{n}{k} \rfloor - 1 & \text{if } n \equiv k \pmod{2}, \lfloor \frac{n}{k} \rfloor \leq \lfloor \frac{m}{k+1} \rfloor \text{ and } \lfloor \frac{n}{k} \rfloor \text{ is even,} \\ \lfloor \frac{m}{k+1} \rfloor & \text{if } n \equiv k \pmod{2}, \lfloor \frac{n}{k} \rfloor \geq \lfloor \frac{m}{k+1} \rfloor \text{ and } \lfloor \frac{m}{k+1} \rfloor \text{ is odd,} \\ \lfloor \frac{m}{k+1} \rfloor - 1 & \text{if } n \equiv k \pmod{2}, \lfloor \frac{n}{k} \rfloor \geq \lfloor \frac{m}{k+1} \rfloor \text{ and } \lfloor \frac{m}{k+1} \rfloor \text{ is even,} \\ \lfloor \frac{n}{k+1} \rfloor & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor \text{ is odd,} \\ \lfloor \frac{n}{k+1} \rfloor - 1 & \text{if } n \equiv k+1 \pmod{2} \text{ and } \lfloor \frac{n}{k+1} \rfloor \text{ is even.} \end{cases}$$

Proof. First let $m \equiv n \pmod{2}$. By Corollary 11, $d_{kS}^t(K_{n,m}) \leq \frac{n}{k}$ if $n \equiv k \pmod{2}$ and $d_{kS}^t(K_{n,m}) \leq \frac{n}{k+1}$ if $n \equiv k+1 \pmod{2}$. Hence, by Theorem 18, $d_{kS}^t(K_{n,m}) \leq d_{kS}^t(K_{n,n})$. Let $\{f_1, f_2, \ldots, f_d\}$ be a STkD family of $K_{n,n}$ and $d = d_{kS}^t(K_{n,n})$. We extend this family to a STkD family of $K_{n,m}$. Add the new vertices $\{w_1, w_2, \ldots, w_{m-n}\}$ to a partite set of $K_{n,n}$ and join each w_i , $1 \leq i \leq m-n$, to every vertex in the other partite set of $K_{n,n}$ to obtain a $K_{n,m}$. Define $f_j^*: K_{n,m} \to \{-1,1\}$ as follows: $f_j^*(v) = f_j(v)$ if $v \in V(K_{n,n})$ and $f_j(w_i) = (-1)^{i+j}$ for $1 \leq i \leq m-n$ and $1 \leq j \leq d$. Since $m \equiv n \pmod{2}$, $\{f_1^*, f_2^*, \ldots, f_d^*\}$ is a STkD family of $K_{n,m}$, so $d_{kS}^t(K_{n,m}) \geq d$, and hence $d_{kS}^t(K_{n,m}) = d_{kS}^t(K_{n,n})$.

Now assume $m \neq n \pmod{2}$. Let $X = \{x_0, x_1, \ldots, x_{n-1}\}$ and $Y = \{y_0, y_1, \ldots, y_{m-1}\}$ be the partite sets of $K_{n,m}$. We consider two cases. **Case 1.** $n \equiv k \pmod{2}$. Then $m \equiv k+1 \pmod{2}$. Assume $n = kq_1 + r_1$, where $0 \leq r_1 \leq k-1$, and $m = (k+1)q_2 + r_2$, where $0 \leq r_2 \leq k$.

Subcase 1.1 $q_1 \leq q_2$. Then $d_{kS}^t(K_{n,m}) \leq q_1$ if q_1 is odd by Corollary 11, and $d_{kS}^t(K_{n,m}) \leq q_1 - 1$ if q_1 is even by Corollary 11 and Theorem 8. Let $q_2 = q_1 + s$ for some $s \geq 0$. Then

$$m = (k+1)(q_1+s) + r_2 = (k+1)q_1 + s(k+1) + r_2.$$

If q_1 is odd, by assumptions, r_1 and $s(k+1) + r_2$ are both even. Define the functions f_1, \ldots, f_{q_1} as follows.

$$\begin{array}{ll} f_1(x_i) = 1 & \text{if} & 0 \leq i \leq \frac{k(q_1+1)}{2} - 1, \\ f_1(x_i) = -1 & \text{if} & \frac{k(q_1+1)}{2} \leq i \leq kq_1 - 1, \\ f_1(y_j) = 1 & \text{if} & 0 \leq j \leq \frac{(k+1)(q_1+1)}{2} - 1, \\ f_1(y_j) = -1 & \text{if} & \frac{(k+1)(q_1+1)}{2} \leq j \leq (k+1)q_1 - 1. \end{array}$$

and for $2 \le \ell \le q_1$, $0 \le i \le kq_1 - 1$ and $0 \le j \le (k+1)q_1 - 1$,

$$f_{\ell}(x_i) = f_{\ell-1}(x_{i+2k})$$
 and $f_{\ell}(y_j) = f_{\ell-1}(y_{j+2(k+1)})$

where the sum is taken modulo kq_1 if *i* is involved, and modulo $(k+1)q_1$ if *j* is involved. In addition, for $1 \le \ell \le q_1$, $kq_1 \le i \le n-1$ and $(k+1)q_1 \le j \le m-1$,

$$f_{\ell}(x_i) = (-1)^{i+\ell}$$
 and $f_{\ell}(y_j) = (-1)^{j+\ell}$.

It is straightforward to see that $\{f_1, \ldots, f_{q_1}\}$ is a signed total k-dominating family of $K_{n,m}$. Hence $d_{kS}^t(K_{n,m}) \ge q_1$. Therefore $d_{kS}^t(K_{n,m}) = q_1$, as desired. Now let q_1 be even. We have $n = k(q_1 - 1) + k + r_1$ and

$$m = (k+1)(q_1+s) + r_2 = (k+1)(q_1-1) + (s+1)(k+1) + r_2.$$

By assumptions, $k + r_1$ and $(s + 1)(k + 1) + r_2$ are both even. Define the functions f_1, \ldots, f_{q_1-1} as follows.

$$f_1(x_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{kq_1}{2} - 1, \\ f_1(x_i) = -1 \quad \text{if} \quad \frac{kq_1}{2} \le i \le k(q_1 - 1) - 1, \\ f_1(y_j) = 1 \quad \text{if} \quad 0 \le j \le \frac{(k+1)q_1}{2} - 1, \\ f_1(y_j) = -1 \quad \text{if} \quad \frac{(k+1)q_1}{2} \le j \le (k+1)(q_1 - 1) - 1 \end{cases}$$

and for $2 \le \ell \le q_1 - 1$, $0 \le i \le k(q_1 - 1) - 1$ and $0 \le j \le (k+1)(q_1 - 1) - 1$,

$$f_{\ell}(x_i) = f_{\ell-1}(x_{i+2k})$$
 and $f_{\ell}(y_j) = f_{\ell-1}(y_{j+2(k+1)})$

where the sum is taken modulo $k(q_1 - 1)$ if *i* is involved, and modulo $(k + 1)(q_1 - 1)$ if *j* is involved. In addition, for $1 \le \ell \le q_1 - 1$, $k(q_1 - 1) \le i \le n - 1$ and $(k + 1)(q_1 - 1) \le j \le m - 1$,

$$f_{\ell}(x_i) = (-1)^{i+\ell}$$
 and $f_{\ell}(y_j) = (-1)^{j+\ell}$

It is straightforward to see that $\{f_1, \ldots, f_{q_1-1}\}$ is a signed total k-dominating family of $K_{n,m}$. Hence $d_{kS}^t(K_{n,m}) \ge q_1 - 1$. Therefore $d_{kS}^t(K_{n,m}) = q_1 - 1$, as desired.

Subcase 1.2 $q_1 > q_2$. Then $d_{kS}^t(K_{n,m}) \leq q_2$ if q_2 is odd, by Corollary 11, and $d_{kS}^t(K_{n,m}) \leq q_2 - 1$ if q_2 is even, by Corollary 11 and Theorem 8. Let $q_1 = q_2 + t$ for some $t \geq 0$. Then $n = k(q_2 + t) + r_1 = kq_2 + kt + r_1$. If q_2 is odd, by assumptions, r_2 and $kt + r_1$ are both even. If q_2 is even, then $m = (k+1)(q_2-1)+k+1+r_2$ and $n = k(q_2+t)+r_1 = k(q_2-1)+k(t+1)+r_1$. By assumptions, $k+1+r_2$ and $k(t+1)+r_1$ are both even. Hence, by an argument similar to that described in Subcase 1.1 we see that if q_2 is odd, $d_{kS}^t(K_{n,m}) = q_2$ and if q_2 is even, $d_{kS}^t(K_{n,m}) = q_2 - 1$.

Case 2. $n \equiv k + 1 \pmod{2}$. Then $m \equiv k \pmod{2}$. Let n = (k+1)q + r, where $0 \leq r \leq k$. Then $d_{kS}^t(K_{n,m}) \leq q$ if q is odd by Corollary 11, and $d_{kS}^t(K_{n,m}) \leq q - 1$ if q is even by Corollary 11 and Theorem 8. Let m = n + s, where $s \geq 0$. Then m = kq + q + r + s. If q is odd, then r and q + r + s are both even. Define the functions f_1, \ldots, f_q as follows.

$$\begin{aligned} f_1(x_i) &= 1 & \text{if} & 0 \le i \le \frac{(k+1)(q+1)}{2} - 1, \\ f_1(x_i) &= -1 & \text{if} & \frac{(k+1)(q+1)}{2} \le i \le (k+1)q - 1, \\ f_1(y_j) &= 1 & \text{if} & 0 \le j \le \frac{k(q+1)}{2} - 1, \\ f_1(y_j) &= -1 & \text{if} & \frac{k(q+1)}{2} \le j \le kq - 1 \end{aligned}$$

and for $2 \le \ell \le q$, $0 \le i \le (k+1)q - 1$ and $0 \le j \le kq - 1$,

$$f_{\ell}(x_i) = f_{\ell-1}(x_{i+2(k+1)})$$
 and $f_{\ell}(y_j) = f_{\ell-1}(y_{j+2k}),$

where the sum is taken modulo (k + 1)q if *i* is involved, and modulo kq if *j* is involved. In addition, for $1 \le \ell \le q$, $(k + 1)q \le i \le n - 1$ and $kq \le j \le m - 1$,

$$f_{\ell}(x_i) = (-1)^{i+\ell}$$
 and $f_{\ell}(y_j) = (-1)^{j+\ell}$.

It is straightforward to see that $\{f_1, f_2, \ldots, f_q\}$ is a signed total k-dominating family of $K_{n,m}$. Hence $d_{kS}^t(K_{n,m}) \ge q$. Therefore $d_{kS}^t(K_{n,m}) = q$, as desired.

If q is even, we write n = (k+1)(q-1)+k+1+r and m = k(q-1)+k+q+r+s. By assumptions, k+1+r and k+q+r+s are both even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$\begin{aligned} f_1(x_i) &= 1 & \text{if} & 0 \le i \le \frac{(k+1)q}{2} - 1, \\ f_1(x_i) &= -1 & \text{if} & \frac{(k+1)q}{2} \le i \le (k+1)(q-1) - 1, \\ f_1(y_j) &= 1 & \text{if} & 0 \le j \le \frac{kq}{2} - 1, \\ f_1(y_j) &= -1 & \text{if} & \frac{kq}{2} \le j \le k(q-1) - 1 \end{aligned}$$

and for $2 \le \ell \le q - 1$, $0 \le i \le (k+1)(q-1) - 1$ and $0 \le j \le k(q-1) - 1$, $f_{\ell}(x_i) = f_{\ell-1}(x_{i+2(k+1)})$ and $f_{\ell}(y_j) = f_{\ell-1}(y_{j+2k})$,

 $J_{\ell}(x_i) = J_{\ell-1}(x_{i+2(k+1)}) \text{ and } J_{\ell}(y_j) = J_{\ell-1}(y_{j+2k}),$

where the sum is taken modulo (k + 1)(q - 1) if *i* is involved, and modulo k(q-1) if *j* is involved. In addition, for $1 \le \ell \le q-1$, $(k+1)(q-1) \le i \le n-1$ and $k(q-1) \le j \le m-1$,

$$f_{\ell}(x_i) = (-1)^{i+\ell}$$
 and $f_{\ell}(y_j) = (-1)^{j+\ell}$.

It is straightforward to see that $\{f_1, f_2, \ldots, f_{q-1}\}$ is a signed total k-dominating family of $K_{n,m}$. Hence $d_{kS}^t(K_{n,m}) \ge q-1$. Therefore $d_{kS}^t(K_{n,m}) = q-1$, as desired.

Acknowledgement. The authors would like to thank the referee whose suggestions were most helpful in writing the final version of this paper.

References

- M. Guan and E. Shan, Signed total domatic number of a graph, J. Shanghai Univ. 12 (2008), no. 1, 31–34.
- [2] M. A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), no. 1-3, 109–125.
- [3] _____, On the signed total domatic number of a graph, Ars Combin. 79 (2006), 277–288.
- [4] C. P. Wang, The signed k-domination numbers in graphs, Ars Combin. (to appear).
- [5] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [6] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51(126) (2001), no. 2, 225–229.

Abdollah Khodkar Department of Mathematics University of West Georgia Carrollton, GA 30118, USA *E-mail address:* akhodkar@westga.edu

S. M. Sheikholeslami Department of Mathematics Azarbaijan University of Tarbiat Moallem Tabriz, I. R. Iran *E-mail address*: s.m.sheikholeslami@azaruniv.edu