DOI QR코드

DOI QR Code

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Received : 2010.09.30
  • Accepted : 2011.11.04
  • Published : 2012.01.20

Abstract

In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.

Keywords

References

  1. E. Figueres, J. M. Benavent, G. Garcera, and M. Pascual, "Robust control of power-factor-correction rectifiers with fast dynamic response," IEEE Trans. Ind. Electron., Vol. 52, No.1, pp.66-76, Feb. 2005 https://doi.org/10.1109/TIE.2004.841138
  2. J. M. Benavent, E. Figueres, G. Garcera, C. Cerver, and M. Pascual, "Design and evaluation of a power factor correction rectifier with robust control and fast dynamic response," in Proc. IEEE PESC, Vol. 3, pp. 2340-2345, Feb. 2004.
  3. E. Figueres, J. M. Benavent, G. Garcera, and M. Pascual, "A control circuit with load current injection for single-phase power factor correction rectifiers," IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp.1272-1281, Feb. 2005. https://doi.org/10.1109/TIE.2007.891987
  4. R. Ghosh and G. Narayanan, "Generalized feedforward control of singlephase PWM rectifiers using disturbance observers," IEEE Trans. Ind. Electron., Vol. 54, No.2, pp. 984-993, Apr. 2007. https://doi.org/10.1109/TIE.2007.892103
  5. M. O. Eissa, S. B. Leeb, G. C. Verghese, and A. M. Slankovic, "A fast analog controller for a unity-power factor AC/DC convener," in Proc. IEEE APEC'94, pp. 551-555, 1994.
  6. S. wall and R. Jackson, "Fast controller design for single-phase powerfactor- correction systems," IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 654-660, Oct. 1997. https://doi.org/10.1109/41.633465
  7. G. Spiazzi, P. Mattavelli, and L. Rossetto, "Power factor preregulators with improved dynamic response," IEEE Trans. Power Electron., Vol. 12, No. 2, pp. 343-349, Mar. 1997. https://doi.org/10.1109/63.558761
  8. A. Prodic, I. Chen, R.W. Erickson, D. Maksimovic "Digitally controlled low-harmonic rectifier having fast dynamics responses," in APEC'02, 2002, pp. 476-482, 2002.
  9. S. Buso, P. Mattavelli, L. Rossetto, and G. Spiazzi , "Simple digital control improving dynamic performance of power factor preregulators," IEEE Trans. Power Electron., Vol. 13, No. 5, pp. 814-823, Sep. 1998. https://doi.org/10.1109/63.712280
  10. J. B. Williams, "Design of feedback loop in unity power factor AC to DC converter," in Proc. IEEE PESC, Vol. 2, pp. 959-967, Jun. 1989.
  11. A. Prodic, D. Maksimovic, and R. W. Erickson, "Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers," IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 173-181, Jan. 2006. https://doi.org/10.1109/TPEL.2005.861157
  12. A. Prodic, J. Chen, D. Maksimovic, and R. W. Erickson, "Selftuning digitally controlled low-harmonic rectifier having fast dynamics responses," IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 420-428, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807141
  13. G. Spiazzi, P. Mattavelli, and L. Rossetto, "Methods to improve dynamic response of power factor preregulators: An overview," in Proc. EPE, Vol. 3, pp.754-759,1995.
  14. W. I. Tsai, Y. Y. Sun, and W. S. Shieh, "Modelling and control of single phase switching mode rectifiers with near-optimum dynamic regulation," in Proc. IEEE IECON'94, pp. 501-506, 1994.
  15. R. Ghosh and G. Narayanan, "A single-phase boost rectifier system for wide range of load variations," IEEE Trans. Power Electron., Vol. 22, No.2, pp. 4700-479, Mar. 2007.
  16. M. David, K.D. Gusseme, P. M. Alex, and J. A. Melkebeek "Duty-ratio feedforward for digitally controlled boost PFC converters," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 108-115, Feb. 2005. https://doi.org/10.1109/TIE.2004.841127
  17. M. Chen and J. Sun "Feedforward current control of boost single-phase PFC converters," in Proc. IEEE APEC, Vol. 2, pp. 1187-1193, 2004.
  18. S. B. Yaakov and I. Zeltser, "The dynamics of a PWM boost converter with resistive input" IEEE Trans. Power Electron., Vol. 46, No. 3, pp. 613-619, Jun. 1999.
  19. Z. Lai and K. M. Smedley "A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator" IEEE Trans. Power Electron., Vol. 13, No. 3, pp. 501-510, May 1998. https://doi.org/10.1109/63.668113
  20. R. Ghosh and G. Narayanan, "A simple method to improve the dynamic response of single-phase pwm rectifiers," IEEE Trans. Ind. Electron., Vol. 55, No.10, pp. 3627-3634, Oct. 2008 https://doi.org/10.1109/TIE.2008.928113
  21. H. Singh, "introduction to game theory and its application in electric power markets," IEEE Computer Application in Power, Vol.12, pp.18-22, Oct.1999. https://doi.org/10.1109/67.795133
  22. P. Hajela and C. Y. Lin, "Genetic search strategies in multicriterion optimal design," Structural Optimization, Vol. 4, pp. 99-107, Jun. 1992. https://doi.org/10.1007/BF01759923
  23. J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched pareto genetic algorithm for multiobjective optimization," in Proc. 1st IEEE Conf. Evolutionary Computation, IEEE World Congr. Computational Computation, Vol. 1, pp. 82-87, 1994.
  24. M. P. Fourman, "Compaction of symbolic layout using genetic algorithms," in Proc. Int. Conf. Genetic Algorithms and Their Applications, pp.141-153, Jul. 1985.
  25. N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms," Evolutionary Computation, Vol. 2, No. 3, pp. 221-248, 1994. https://doi.org/10.1162/evco.1994.2.3.221
  26. E. Zitzler , and L. Thiele, "Multi-objective evolutionary algorithms :A comparative case study and the strength pareto approach," IEEE Trans. Evol. Comput., Vol .3, No. 4 , pp. 257-271, Nov. 1999. https://doi.org/10.1109/4235.797969
  27. S. M. R. Rafiei, A. Amirahmadi, and G. Griva, "Chaos rejection and optimal dynamic response for boost converter using spea multi-objective optimization approach," in Proc. IEEE IECON'09, pp. 3315-3322, Nov. 2009.

Cited by

  1. Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger vol.20, pp.2, 2015, https://doi.org/10.6113/TKPE.2015.20.2.182