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Abstract

B. M. Schein([1]) considered systems of the form (@; - ,—), where @ is a set of functions

" "

closed under the composition ” °

"

of functions and the set theoretic subtraction " —”. In this

structure, (@; = ) is a function semigroup and (@; —) is a subtraction algebra in the sense of
[1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible
functions. Also this structure is closely related to the mathematical logic, Boolean algebra,
Bck-algera, etc.

In this paper, we define the near subtraction semigroup as a generalization of the subtraction
semigroup, and define the notions of strong for it, and then we will search the general properties of
this structure, the properties of ideals, and the application of it.

1. Introduction satisfies the following identities: for any
x,y,z€ X,
By a subtraction algebra we mean an algebra 1) x—(y—x)=ux
(X; —) with a single binary operation "-" that 2 x—(x—y)=y—(y—x);
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3 (x—y)—2z=(x—2)—y.
The last identity permits us to omit parenth-
eses in expressions of the form (x—y)—=z.

If the subtraction algebra X has the zero
element 0 such that 0=a—a for al g€ X,
then the subtraction determines an order relation
on X:

asbsa—b=0.
We will consider the subtraction algebra that
has the element 0.

The ordered set (X; <) is a semi-Boolean
algebra in the sense of [1], that is , it is a
meet semilattice with 0 in which every interval

[0, al is a Boolean algebra with respect to the
induced order. Here
aNb=a—(a—b),
and the complement b of an element be
[0, alis a—b, and for any b,c<[0, al,
bVe=(b6'Nc')
=a—((a—b)—((a—b)—(a—c))).

The subtraction algebra X has the following
properties ([4]):

(1) x—0=xand 0—x=0.

2) x—(x—y)<y.

3 x<y ©® x=y—w for some weX.

(4) x<y implies x— 2<y—2z for all zX.

(5 x<y implies z—y<z— x for all z€X.

6 x—(x—(x—M)=x—y.

By a subtraction semigroup([3]) we mean an
algebra (X; :,—) with two binary operations

” ”

— " and

"

« " that satisfies the following
axioms:

(1) (X; +) is a semigroup,

(2) (X; —) is a subtraction algebra,

(3) for any x,y,z€X, x(y —2)=2xy— x2

and (x— y)z=xz—y=z.

2. Definition of near subtraction
semigroup

Definition 2.1. By a near subtraction semi-
group (shortly, denoted by NSS) we mean an

algebra (S; -+, — ) with two binary operations

von "

and + " that satisfies the following
axioms!

(1) (S; ) is a semigroup,

(2) (S; —) is a subtraction algebra,

3) a(b—~c)=ab— ac for any a,b,csS.

It is a left near subtraction semigroup in
strictly, and if S satisfies the following:
(") : (a—b)c= ac—bc
then it is called a right near subtraction
semigroup, and if S is a left and right near
subtraction semigroup, then S is a subtraction

semigroup.

Example 2.2. Let $S={0,1} and " —"

[

and

are defined by

01 (10 1
010 0 0{0 0
1{1 0 1{0 1

Then S is a NSS.

Example 2.3. Let S=1{0,1,2,3,4,5} and

"="and " + " are defined by

—{0 123435 (101 2345
0/j0 0000O0O0 0{0000O0O
111 0 3 431 1101 4340
21250254 210 4 2045
3|13 03033 3j]0 30300
414 0 0 4 0 4 4/0 4 4040
51550550 5/0 05005

Then S is a NSS.
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Example 2.4. In example 2.3, the operations

"—"and " « " are defined by

—012345 101 2345
0j10 00 00O 0i01 2345
1{1 0 3431 101 2345
2125025 4 2101 2 3 45
3{3 03033 3101 2345
4(4 00404 4101 2345
5|55 0550 5/(01 2345

Then S is a NSS.

In example 23, S is commutative, that is,
ab=ba for all a,beS, , but in example 2.4,
S is not commutative.

We can draw the Hasse diagram for S in

example 2.3 and 2.4 as follow:

Example 2.5. Let Z, be the set of all positive
S(Z+)= {; : nEZ+}1

integer and where

n={nz:zeZ,} for each neZ,. We can

” ”

define two binary operations " — ” as the set

no,on

theoretic subtraction an as the following:

n - m=nNm.

for every n, meS. Then S is a NSS, and

generally, n - m=2nm. If n and m are

relatively prime, ie, (#,m)=1, then

nm.

n-m=

Theorem 2.6.([4)) If S is a NSS, then (S<)
is a poset with the relation given as:
a<b if and only if a—b=0

for any a, beS.

Theorem 2.7.([4]) f S is a NSS, then a/b is
the greatest lower bound of a and & with
aN\b=a—(a—b) for any a, bsS.

A NSS S is a lower semilattice with the
order < from Theorem 27, and (0 is the

bottom element in S.

Lemma 28. If S is a NSS, then
(1) a0=0 for all a<S,
(2) If a<b, then ca<ch, for all a,b,c
eS.
(Proof) (1) For any a€S,
a0= a(0—0)= a0—al= 0.
(2) Let a<b(a,beS). Then a—b=0, and
we have
ca—cb=c(a—b)=c0=0,

hence ca<cb.

3. Ideal in near subtraction
semigroups

Definition 3.1. Let (S;—, -) be a NSS and
I a nonempty subset of S. Then I is called a
left ideal (resp. right ideal) in S if

(1) I is a subalgebra of (S;—),

(2) SIS I (resp. ISS D).
I is called an ideal in S if I is both a left
and right ideal in S.

Example 3.2. In Example 2.3 and 24, I=({1,
1,3,4} is an ideal in S.

Lemma 33. If S is a NSS, then for any
ac€S, aS= {as:s=S} is a right ideal in S.

408



gz 2003 £ATHREd3 =F3F Voll Nol

(Proof) If as,, as, €aS, then
as|—as,;=a(s,—sy<€as,

hence aS is a subalgebra of the subtraction

algebra (S; —), and since (aS)S= a(SS)<SasS,

aS is a right ideal in S.

As shown in example 24, generally, 0a+*0
and Sa= {sa:s€S} is not a left ideal of S.
If a NSS S has a element 1 such that
al=1la=a
for all €S, then the element 1 is called a
unity in S.

Definition 3.4. A NSS S is strong(denoted by
SNSS) if for all q, beS,

a—b=a—a-b.

If Sis a SNSS with the unity 1, then 1 is
the greatest element in S, since

x—=1=x—xl=x—x=0.

Example 35. Let X=1{0,4,b6,1} in which

” " n oo

two binary operation - and are
defined as follows
—|0ab1 ‘10 a b1
0(0 00O 0({0 00O
ala 0 a0 ai0 a 0 a
bbb 00 bi0 0 b b
111 6 a0 110 ¢ 61
Then S is a SNSS with the unity 1.

Lemma 36. Let S be a SNSS. Then
(1) ab<b for any a, b<S,
(2) a<bif and only if a<ab, for any
a, beS.
(Proof) (1) Let a, b= S. Then we have
ab— b= ab—(ab)b = ab— a( bb)

=a(b—bb) = a(b—b)
=a)=0,
hence ab<b.

(2) It is easy to show from the definition of
SNSS and the above (1).

Corollary 3.7. If S is a SNSS, then for any a

€S, a is an idempotent element.

Theorem 3.8. Let S be a SNSS with 1. Then
the following are equivalent :

(1) Iis a right ideal in S.

(2) beland a<b imply a1l
(Proof) Let I be a right ideal in S. If be]
and @¢<b, then a=b—w for some weS,
and we have

a=b—w=>b—bwel,

since bweISES L

Conversely, suppose that b= and a<¥b
imply a=1l. Let a, bel, Then since 1—b<1,

a—b=a—ab=al—ab=a(l-b)

<al =a el

ie, a—bel and I is a subalgebra of S.
Also if a€/l and s&S, then

as—a=as—al =a(s—1)=a-0=0,

and hence as<ael, and assl.

Theorem 3.9. If S is a SNSS with 1, then
a/\b=ab
for all a, beS.

Corollary 3.10. If S is a SNSS with 1, then
aa=a

for all a=S and S is a commutative, ie, S is

subtraction

an idempotent and commutative

semigroup.

Corollary 3.11. If S is a SNSS with 1, then
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the following are equivalent :

(1) Iis an ideal in S.

(2) b=l and a<b imply acsl
(Proof) It is proved immediately from Theorem
3.8 and commutativity of S.
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