• Title/Summary/Keyword: Set functions

Search Result 1,681, Processing Time 0.028 seconds

Improvement of Basis-Screening-Based Dynamic Kriging Model Using Penalized Maximum Likelihood Estimation (페널티 적용 최대 우도 평가를 통한 기저 스크리닝 기반 크리깅 모델 개선)

  • Min-Geun Kim;Jaeseung Kim;Jeongwoo Han;Geun-Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, a penalized maximum likelihood estimation (PMLE) method that applies a penalty to increase the accuracy of a basis-screening-based Kriging model (BSKM) is introduced. The maximum order and set of basis functions used in the BSKM are determined according to their importance. In this regard, the cross-validation error (CVE) for the basis functions is employed as an indicator of importance. When constructing the Kriging model (KM), the maximum order of basis functions is determined, the importance of each basis function is evaluated according to the corresponding maximum order, and finally the optimal set of basis functions is determined. This optimal set is created by adding basis functions one by one in order of importance until the CVE of the KM is minimized. In this process, the KM must be generated repeatedly. Simultaneously, hyper-parameters representing correlations between datasets must be calculated through the maximum likelihood evaluation method. Given that the optimal set of basis functions depends on such hyper-parameters, it has a significant impact on the accuracy of the KM. The PMLE method is applied to accurately calculate hyper-parameters. It was confirmed that the accuracy of a BSKM can be improved by applying it to Branin-Hoo problem.

Fuzzy PID Control by Grouping of Membership Functions of Fuzzy Antecedent Variables with Neutrosophic Set Approach and 3-D Position Tracking Control of a Robot Manipulator

  • Can, Mehmet Serhat;Ozguven, Omerul Faruk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.969-980
    • /
    • 2018
  • This paper aims to design of the neutrosophic fuzzy-PID controller and it has been compared with the conventional fuzzy-PID controller for position tracking control in terms of robustness. In the neutrosophic fuzzy-PID controller, error (e) and change of error (ce) were assessed separately on two fuzzy inference systems (FISs). In this study, the designed method is different from the conventional fuzzy logic controller design, membership degrees of antecedent variables were determined by using the T(true), I(indeterminacy), and F(false) membership functions. These membership functions are grouped on the universe of discourse with the neutrosophic set approach. These methods were tested on three-dimensional (3-D) position-tracking control application of a spherical robot manipulator in the MATLAB Simulink. In all tests, reference trajectory was defined for movements of all axes of the robot manipulator. According to the results of the study, when the moment of inertia of the rotor is changed, less overshoot ratio and less oscillation are obtained in the neutrosophic fuzzy-PID controller. Thus, our suggested method is seen to be more robust than the fuzzy-PID controllers.

Finding Pseudo Periods over Data Streams based on Multiple Hash Functions (다중 해시함수 기반 데이터 스트림에서의 아이템 의사 주기 탐사 기법)

  • Lee, Hak-Joo;Kim, Jae-Wan;Lee, Won-Suk
    • Journal of Information Technology Services
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Recently in-memory data stream processing has been actively applied to various subjects such as query processing, OLAP, data mining, i.e., frequent item sets, association rules, clustering. However, finding regular periodic patterns of events in an infinite data stream gets less attention. Most researches about finding periods use autocorrelation functions to find certain changes in periodic patterns, not period itself. And they usually find periodic patterns in time-series databases, not in data streams. Literally a period means the length or era of time that some phenomenon recur in a certain time interval. However in real applications a data set indeed evolves with tiny differences as time elapses. This kind of a period is called as a pseudo-period. This paper proposes a new scheme called FPMH (Finding Periods using Multiple Hash functions) algorithm to find such a set of pseudo-periods over a data stream based on multiple hash functions. According to the type of pseudo period, this paper categorizes FPMH into three, FPMH-E, FPMH-PC, FPMH-PP. To maximize the performance of the algorithm in the data stream environment and to keep most recent periodic patterns in memory, we applied decay mechanism to FPMH algorithms. FPMH algorithm minimizes the usage of memory as well as processing time with acceptable accuracy.

Identification Using Orthonormal Functions

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.285-288
    • /
    • 1998
  • A least-squares identification method is studied that estimates a finite number of coefficients in the series expansion of a transfer function, where the expansion is in terms of recently introduced generalized basis functions, We will expand and generalize the orthogonal functions as basis functions for dynamical system representations. To this end, use is made of balanced realizations as inner transfer functions. The orthogonal functions can be considered as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions, and give rise to an alternative series expansion of rational transfer functions. We show that the Laplace transform of the expansion for some sets$\Psi_{\kappa}(Z)$ is equivalent to a series expansion . Techniques based on this result are presented for obtaining the coefficients $c_{n}$ as those of a series. One of their important properties is that, if chosen properly, they can substantially increase the speed of convergence of the series expansion. This leads to accurate approximate models with only a few coefficients to be estimated. The set of Kautz functions is discussed in detail and, using the power-series equivalence, the truncation error is obtained.

  • PDF

A Procedural Theory of Concepts and the Problem of Synthetic a priori

  • Duzi, Marie;Materna, Pavel
    • Korean Journal of Logic
    • /
    • v.7 no.1
    • /
    • pp.1-22
    • /
    • 2004
  • The Kantian idea that some judgments are synthetic even in the area of a priori judgments cannot be accepted in its original version, but a modification of the notions 'analytic' and 'synthetic' discovers a rational core of that idea. The new definition of 'analytic' concerns concepts and makes it possible to distinguish between analytic concepts, which are effective ways of computing recursive functions, and synthetic concepts, which either define non-recursive functions, or define recursive functions in an ineffective way. To justify this claim we have to construe concepts as abstract procedures not reducible to set-theoretical entities.

  • PDF

Uniqueness of Meromorphic Functions That Share Three Sets

  • Banerjee, Abhijit
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.15-29
    • /
    • 2009
  • Dealing with a question of gross, we prove some uniqueness theorems concerning meromorphic functions with the notion of weighted sharing of sets. Our results will not only improve and supplement respectively two results of Lahiri-Banerjee [9] and Qiu and Fang [13] but also improve a very recent result of the present author [1].

ON WEAKLY sγ-CONTINUOUS FUNCTIONS

  • Min, Won Keun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.353-358
    • /
    • 2009
  • In [6], the author introduced the concepts of $s\gamma$-open sets and $s\gamma$-continuous functions. In this paper, we introduce the concept of weak $s\gamma$-continuity which is a generalization of $s\gamma$-continuity and weak continuity and investigate characterizations for such functions.

  • PDF