
KYUNGPOOK Math. J. 49(2009), 15-29

Uniqueness of Meromorphic Functions That Share Three Sets

Abhijit Banerjee
Department of Mathematics, Kalyani Government Engineering College, West Ben-
gal 741235, India
e-mail : abanerjee_kal@yahoo.co.in,abanerjee_kal@rediffmail.com and
abanerjee@mail15.com

Abstract. Dealing with a question of gross, we prove some uniqueness theorems con-

cerning meromorphic functions with the notion of weighted sharing of sets. Our results

will not only improve and supplement respectively two results of Lahiri-Banerjee [9] and

Qiu and Fang [13] but also improve a very recent result of the present author [1].

1. Introduction and preliminaries

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. We denote by T (r) the maximum of T (r, f) and T (r, g). The
notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r → ∞, outside a
possible exceptional set of finite linear measure. If for some a ∈ C ∪ {∞}, f and
g have the same set of a-points with same multiplicities then we say that f and g
share the value a CM (counting multiplicities). If we do not take the multiplicities
into account, f and g are said to share the value a IM (ignoring multiplicities). Let
S be a set of distinct elements of C∪{∞} and Ef (S) =

⋃
a∈S

{z : f(z)−a = 0}, where

each zero is counted according to its multiplicity. If we do not count the multiplicity
the set Ef (S) =

⋃
a∈S

{z : f(z)− a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) we

say that f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say
that f and g share the set S IM.

In 1976 F. Gross [3] posed the following question:

Question A. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical?

For meromorphic function it is natural to ask the following question.
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Question B([15]). Can one find three finite sets Sj (j = 1, 2, 3) such that any
two nonconstant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2, 3 must be identical?

During the last few years several authors investigate the possible answer of
Question B and continuous efforts is being put in to relax the hypothesis of the
result. (cf. [1], [2], [9], [12], [13], [15], [18]).

In the direction of Question B Fang and Xu [2] proved the following result.

Theorem A([2]). Let S1 = {z : z3−z2−1 = 0}, S2 = {0} and S3 = {∞}. Suppose

that f and g are two nonconstant meromorphic functions satisfying Θ(∞; f) >
1
2

and Θ(∞; g) >
1
2
. If Ef (Sj) = Eg(Sj) for j = 1, 2, 3 then f ≡ g.

Dealing with the question of Gross, Qiu and Fang [13] proved the following
theorem.

Theorem B([13]). Let n ≥ 3 be a positive integer S1 = {z : zn − zn−1 − 1 = 0},
S2 = {0},and let f and g be two nonconstant meromorphic functions whose poles
are of multiplicities at least 2. If Ef ({∞}) = Eg({∞}) and Ef (Si) = Eg(Si) for
i = 1, 2 then f ≡ g.

They also gave example to show that the condition that the poles of f(z) and
g(z) are of multiplicities at least 2 can not be removed in Theorem B. It should be
noted that if two meromorphic functions f and g have no simple pole then clearly

Θ(∞, f) ≥ 1
2

and Θ(∞, g) ≥ 1
2
. Lahiri and Banerjee [9] investigated the situation

for Θ(∞, f) ≤ 1
2

and Θ(∞, g) ≤ 1
2

in Theorem A and proved the following result.

Theorem C([9]). Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 = {∞},
where a, b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 4) is an integer. If for two nonconstant meromorphic functions f and g
Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) + Θ(∞; g) > 0 then f ≡ g.

In 2004 Yi and Lin [18] proved the following theorem.

Theorem D([18]). Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 = {∞},
where a, b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 3) is an integer. If for two nonconstant meromorphic functions f and g,

Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) >
1
2

then f ≡ g.

Yi and Lin [18] remarked that the assumption Ef (S2) = Eg(S2) in the above
result can be relaxed to Ef (S2) = Eg(S2). Clearly Theorem D is an improvement
of Theorem B. Recently the present author [1] has investigated the situation of
further relaxation of the nature of sharing the set S1 in Theorem D with the idea of
gradation of sharing of values and sets known as weighted sharing as introduced in
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[6], [7] which measures how close a shared value is to being shared IM or to being
shared CM. We now give the definition.

Definition 1.1([6],[7]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 1.2([6]). Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =

⋃
a∈S

Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0). Improving the result of Yi-
Lin [17] the present author have recently proved the following result.

Theorem E([1]). Let S1, S2 and S3 be defined as in Theorem D. If for two
nonconstant meromorphic functions f and g Ef (S1, 6) = Eg(S1, 6), Ef (S2, 0) =
Eg(S2, 0) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

In this paper we will concentrate our attention of further relaxation of the na-
ture of sharing the set S1 in Theorem B, Theorem C and Theorem E respectively.
We now state the following five theorems which are the main results of the paper.

Theorem 1.1. Let S1, S2 and S3 be defined as in Theorem C. If for two non-
constant meromorphic functions f and g Ef (S1, 3) = Eg(S1, 3), Ef (S2,∞) =
Eg(S2,∞) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 0 then f ≡ g.

Theorem 1.2. Let S1, S2 and S3 be defined as in Theorem D. If for two noncon-
stant meromorphic functions f and g Ef (S1, 5) = Eg(S1, 5), Ef (S2, 0) = Eg(S2, 0)
and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Theorem 1.3. Let S1, S2 and S3 be defined as in Theorem D. If for two non-
constant meromorphic functions f and g Ef (S1, 4) = Eg(S1, 4), Ef (S2,∞) =
Eg(S2,∞) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Remark 1.1. Clearly Theorem1.1, Theorem1.2 and Theorem 1.3 are improvements
of Theorem C, Theorem E and Theorem B respectively.

Theorem 1.4. Let S1, S2 and S3 be defined as in Theorem C. If for two non-
constant meromorphic functions f and g Ef (S1, 2) = Eg(S1, 2), Ef (S2,∞) =

Eg(S2,∞) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) >
4

3n− 5
then

f ≡ g.

Theorem 1.5. Let S1, S2 and S3 be defined as in Theorem D. If for two non-
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constant meromorphic functions f and g Ef (S1, 3) = Eg(S1, 3), Ef (S2,∞) =

Eg(S2,∞) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) >
4n

7n− 12
then

f ≡ g.

Remark 1.2. When n ≥ 4 Theorem 1.5 is true for Θ(∞; f) + Θ(∞; g) > 1 and
hence in that case Theorem 1.5 is an improvement of Theorem B.

The following example shows that the condition Θ(∞; f)+Θ(∞; g) > 0 is sharp
in Theorem 1.1.

Example 1.1. Let

g = −a
e(n−1)z − 1

enz − 1
, f(z) = ezg(z)

and S,
is be as in Theorem 1.1. Then Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3 because

fn−1(f + a) ≡ gn−1(g + a) and f ≡ ezg. Also Θ(∞; f) + Θ(∞; g) = 0 and f 6≡ g.

Though for the standard definitions and notations of the value distribution the-
ory we refer to [4], we now explain some notations which are used in the paper.

Definition 1.3([5]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the count-
ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f whose
multiplicities are not greater(less) than m where each a point is counted according
to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the
a-points of f we ignore the multiplicities. Also N(r, a; f |< m), N(r, a; f |>
m), N(r, a; f |< m) and N(r, a; f |> m) are defined analogously.

Definition 1.4. We denote by N(r, a; f |= k) the reduced counting function of
those a-points of f whose multiplicities is exactly k, where k ≥ 2 is an integer.

Definition 1.5. Let f and g be two nonconstant meromorphic functions such that
f and g share (a, k) where a ∈ C∪{∞}. Let z0 be a a-point of f with multiplicity p,
a a-point of g with multiplicity q. We denote by NL(r, a; f) the counting function
of those a-points of f and g where p > q, by N

(k+1

E (r, a; f) the counting function of
those a-points of f and g where p = q ≥ k+1; each point in these counting functions
is counted only once. In the same way we can define NL(r, a; g) and N

(k+1

E (r, a; g).

Definition 1.6([7]). We denote by N2(r, a; f) the sum N(r, a; f)+N(r, a; f |≥ 2).

Definition 1.7([6],[7]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
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N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Definition 1.8([10]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the
counting function of those a-points of f , counted according to multiplicity, which
are b-points of g.

Definition 1.9([10]). Let a, b1, b2, · · · , bq ∈ C ∪ {∞}. We denote by N(r, a; f |
g 6= b1, b2, · · · , bq) the counting function of those a-points of f , counted according
to multiplicity, which are not the bi-points of g for i = 1, 2, · · · , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined as follows.

(2.1) F =
fn−1(f + a)

−b
, G =

gn−1(g + a)
−b

.

Henceforth we shall denote by H, Φ and V the following three functions

H = (
F

′′

F ′ −
2F

′

F − 1
)− (

G
′′

G′ −
2G

′

G− 1
),

Φ =
F

′

F − 1
− G

′

G− 1
and

V = (
F

′

F − 1
− F ′

F
)− (

G
′

G− 1
− G′

G
) =

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 2.1([7], Lemma 1). Let F , G share (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. Let S1, S2 and S3 be defined as in Theorem 1.1 and F , G be given by
(2.1). If for two nonconstant meromorphic functions f and g Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and H 6≡ 0 then

N(r, H) ≤ N∗(r, 0, f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2) + N∗(r, 1;F,G)

+N∗(r,∞; f, g) + N0(r, 0;F
′
) + N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. Since Ef (S1, 0) = Eg(S1, 0) it follows that F and G share (1, 0). We can
easily verify that possible poles of H occur at (i) those zeros of f and g whose
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multiplicities are distinct from the multiplicities of the corresponding zeros of g and
f respectively, (ii) multiple zeros of f + a and g + a, (iii) those poles of f and g
whose multiplicities are distinct from the multiplicities of the corresponding poles
of g and f respectively, (iv) those 1-points of F and G with different multiplicities,
(v) zeros of F

′
which are not the zeros of F (F − 1), (vi) zeros of G

′
which are not

zeros of G(G − 1). Since H has only simple poles, the lemma follows from above.
This proves the lemma. �

Lemma 2.3([14]). Let f be a nonconstant meromorphic function and P (f) =
a0 + a1f + a2f

2 + · · · + anfn, where a0, a1, a2, · · · , an are constants and an 6= 0.
Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.4. Let F and G be given by (2.1). If f , g share (0, 0) and 0 is not an
Picard exceptional value of f and g. Then Φ ≡ 0 implies F ≡ G.

Proof. Suppose Φ ≡ 0. Then by integration we obtain F − 1 ≡ C(G− 1). It is clear
that if z0 is a zero of f then it is a zero of g. So from (2.1) it follows that F (z0) = 0
and G(z0) = 0. So C = 1 and hence F ≡ G. �

Lemma 2.5. Let F and G be given by (2.1), n ≥ 3 an integer and Φ 6≡ 0. If F , G
share (1,m), f , g share (0, p), (∞, k), where 0 ≤ p < ∞ then

[(n− 1)p + n− 2] N(r, 0; f |≥ p + 1)
≤ N∗(r, 1;F,G) + N∗(r,∞;F,G) + S(r, f) + S(r, g).

Proof. Suppose 0 is an e.v.P. (exceptional value Picard ) of f and g then the lemma
follows immediately. Next suppose 0 is not an e.v.P. of f and g. Let z0 is a zero of f
with multiplicity q and a zero of g with multiplicity r. From (2.1) we know that z0 is
a zero of F with multiplicity (n−1)q and a zero of G with multiplicity (n−1)r. We
note that F and G have no zero of multiplicity t where (n−1)p < t < (n−1)(p+1).
So from the definition of Φ it is clear that z0 is a zero of Φ with multiplicity at least
(n− 1)(p + 1)− 1. So we have

[(n− 1)p + n− 2]N(r, 0; f |≥ p + 1)
= [(n− 1)p + n− 2]N(r, 0; g |≥ p + 1)
= [(n− 1)p + n− 2]N (r, 0;F |≥ (n− 1)(p + 1))
≤ N(r, 0;Φ)
≤ N(r,∞; Φ) + S(r, f) + S(r, g)
≤ N∗(r,∞;F,G) + N∗(r, 1;F,G) + S(r, f) + S(r, g).

The lemma follows from above. �

Lemma 2.6. Let F and G be given by (2.1) f , g share (∞, 0) and ∞ is not an
Picard exceptional value of f and g. Then V ≡ 0 implies F ≡ G.
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Proof. Suppose V ≡ 0. Then by integration we obtain

1− 1
F
≡ A

(
1− 1

G

)
.

It is clear that if z0 is a pole of f then it is a pole of g. Hence from the definition

of F and G we have
1

F (z0)
= 0 and

1
G(z0)

= 0. So A = 1 and hence F ≡ G. �

Lemma 2.7. Let F , G be given by (2.1) and V 6≡ 0. If f , g share (0, 0), (∞, k),
where 0 ≤ k < ∞, and F , G share (1,m) then the poles of F and G are the zeros
of V and

(nk + n− 1) N(r,∞; f |≥ k + 1)
= (nk + n− 1)N(r,∞; g |≥ k + 1)
≤ N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)

+NL(r, 1;F ) + NL(r, 1;G) + S(r, f) + S(r, g).

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immediately.
Next suppose ∞ is not an e.v.P. of f and g. Since f , g share (∞; k), it follows that
F , G share (∞;nk) and so a pole of F with multiplicity p(≥ nk + 1) is a pole of G
with multiplicity r(≥ nk + 1) and vice versa. We note that F and G have no pole
of multiplicity q where nk < q < nk + n. So using Lemma 2.3 and noting that f , g
share (0, 0) and F , G share (1,m) we get from the definition of V

(nk + n− 1)N(r,∞; f |≥ k + 1)
= (nk + n− 1)N(r,∞; g |≥ k + 1)
= (nk + n− 1)N(r,∞;F |≥ nk + n)
≤ N(r, 0;V )
≤ N(r,∞;V ) + S(r, f) + S(r, g)
≤ N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)

+N∗(r, 1;F,G) + S(r, f) + S(r, g).

This proves the lemma. �

Lemma 2.8([1], Lemma 3). Let f and g be two nonconstant meromorphic functions
sharing (1,m), where 2 ≤ m < ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + · · ·+ (m− 1)N(r, 1; f |= m) + mNL(r, 1; f)

+(m + 1)NL(r, 1; g) + mN
(m+1

E (r, 1; f) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.9. Let F , G be given by (2.1) and they share (1,m). If f , g share (0, p),
(∞, k), where 2 ≤ m < ∞ and H 6≡ 0. Then
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T (r, F )
≤ N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N2(r, 0; f + a) + N2(r, 0; g + a)

+N(r,∞; f) + N(r,∞; g) + N∗(r,∞; f, g)−m(r, 1;G)−N(r, 1;F |= 3)
− · · · − (m− 2)N(r, 1;F |= m)− (m− 2) NL(r, 1;F )− (m− 1)NL(r, 1;G)

−(m− 1)N
(m+1

E (r, 1;F ) + S(r, F ) + S(r, G).

Proof. By the second fundamental theorem we get

T (r, F ) + T (r, G)(2.2)
≤ N(r, 0;F ) + N(r,∞;F ) + N(r, 0;G) + N(r,∞;G)

+N(r, 1;F ) + N(r, 1;G)−N0(r, 0;F
′
)−N0(r, 0;G

′
)

+S(r, F ) + S(r, G).

In view of Definition 1.7, using Lemmas 2.1, 2.2 and 2.8 we see that

N(r, 1;F ) + N(r, 1;G)(2.3)
≤ N(r, 1;F |= 1) + N(r, 1;F |= 2) + N(r, 1;F |= 3)

+ · · ·+ N(r, 1;F |= m) + N
(m+1

E (r, 1;F )
+NL(r, 1;F ) + NL(r, 1;G) + N(r, 1;G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)
+N∗(r,∞; f, g) + NL(r, 1;F ) + NL(r, 1;G)
+N(r, 1;F |= 2) + · · ·+ N(r, 1;F |= m)

+N
(m+1

E (r, 1;F ) + NL(r, 1;F ) + NL(r, 1;G)
+T (r, G)−m(r, 1;G) + O(1)−N(r, 1;F |= 2)
−2N(r, 1;F |= 3)− (m− 1)N(r, 1;F |= m)− · · ·

−mN
(m+1

E (r, 1;F )−mNL(r, 1;F )− (m + 1)NL(r, 1;G)

+N0(r, 0;F
′
) + N0(r, 0;G

′
) + S(r, F ) + S(r, G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)
+N∗(r,∞; f, g) + T (r, G)−m(r, 1;G)−N(r, 1;F |= 3)
−2N(r, 1;F |= 4)− · · · − (m− 2)N(r, 1;F |= m)
−(m− 2)NL(r, 1;F )− (m− 1)NL(r, 1;G)

−(m− 1)N
(m+1

E (r, 1;F ) + N0(r, 0;F
′
) + N0(r, 0;G

′
)

+S(r, F ) + S(r, G).

From (2.2) and (2.3) in view of Definition 1.6 the lemma follows. �

Lemma 2.10([9], Lemma 3). Let f , g be two nonconstant meromorphic functions
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sharing (0,∞), (∞,∞) and Θ(∞; f)+Θ(∞; g) > 0. Then fn−1(f+a) ≡ gn−1(g+a)
implies f ≡ g, where n (≥ 2) is an integer and a is a nonzero finite constant.

Lemma 2.11([8], Lemma 5). If two nonconstant meromorphic functions f , g share
(∞, 0) then for n ≥ 2

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a, b are finite nonzero constants.

Lemma 2.12([17], Lemma 6). If H ≡ 0, then F , G share (1,∞). If further F , G
share (∞, 0) then F , G share (∞,∞).

Lemma 2.13([11]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.14. Let F , G be given by (2.1), F , G share (1,m), 0 ≤ m < ∞ and
ω1, ω2 · · ·ωn are the distinct roots of the equation zn + azn−1 + b = 0 and n ≥ 3.
Then

NL(r, 1;F ) ≤ 1
m + 1

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]

+ S(r, f),

where N⊗(r, 0; f
′
) = N(r, 0; f

′ | f 6= 0, ω1, ω2 · · ·ωn).

Proof. Using Lemma 2.3 and Lemma 2.13 we see that

NL(r, 1;F ) ≤ N(r, 1;F |≥ m + 2)

≤ 1
m + 1

(
N(r, 1 : F )−N(r, 1;F )

)
≤ 1

m + 1
[

n∑
j=1

(
N(r, ωj ; f)−N(r, ωj ; f)

)
]

≤ 1
m + 1

(
N(r, 0; f

′
| f 6= 0)−N⊗(r, 0; f

′
)
)

≤ 1
m + 1

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]

+ S(r, f).

This proves the lemma. �

Lemma 2.15([16]). Let F , G be two nonconstant meromorphic functions sharing
(1,∞) and (∞,∞). If

N2(r, 0;F ) + N2(r, 0;F ) + 2N(r,∞;F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r, G)} and S1(r) = o(T1(r)), r → ∞,
outside a possible exceptional set of finite linear measure, then F ≡ G or FG ≡ 1.
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Lemma 2.16. Let F , G be given by (2.1) and n ≥ 4. Also let F , G share (1,m).
If f , g share (0, 0), (∞, k), where 2 ≤ m < ∞, Θ(∞; f) + Θ(∞; g) > 0 and H ≡ 0.
Then f ≡ g.

Proof. Since H ≡ 0 we get from Lemma 2.12 F and G share (1,∞) and (∞,∞). If
possible let us suppose F 6≡ G. Then from Lemma 2.4 and Lemma 2.5 we have

N(r, 0; f) = N(r, 0; g) = S(r).

Again from Lemma 2.6 and Lemma 2.7 we have

N(r,∞; f) + N(r,∞; g) ≤ 4
n− 1

T (r) + S(r).

Therefore we see that

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F )(2.4)
≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a) + 2N(r,∞; f)
≤ N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f) + N(r,∞; g) + S(r).

Using Lemma 2.3 we obtain

(2.5) T1(r) = n max{T (r, f), T (r, g)}+ O(1) = n T (r) + O(1).

So again using Lemma 2.3 we get from (2.4) and (2.5)

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F ) ≤
2 + 4

n−1

n
T1(r) + S1(r).

Since
2 + 4

n−1

n
< 1 for n ≥ 4 by Lemma 2.15 we have FG ≡ 1, which is impossible

by Lemma 2.11. Hence F ≡ G i.e. fn−1(f + a) ≡ gn−1(g + a). This together with
the assumption that f and g share (0, 0) implies that f and g share (0,∞). Now
the lemma follows from Lemma 2.10. �

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share (1, 3),
(∞;∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g. Then
by Lemma 2.4 we get Φ 6≡ 0. Noting that f and g share (0,∞) implies they share
(0, 0), from Lemmas 2.3, 2.5 and 2.9 we obtain for ε > 0

nT (r, f)(3.1)
≤ N(r, 0; f) + N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f)

+N(r,∞; g)−NL(r, 1;F )− 2NL(r, 1;G) + S(r, f) + S(r, g)
≤ 2N(r, 0; f) + T (r, f) + T (r, g) + N(r,∞; f) + N(r,∞; g)−NL(r, 1;F )

−2NL(r, 1;G) + S(r, f) + S(r, g)
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≤ 2
n− 2

[NL(r, 1;F ) + NL(r, 1;G)] + 2T (r) + {2−Θ(∞; f)

−Θ(∞; g) + 2ε}T (r)−NL(r, 1;F )− 2NL(r, 1;G)
+S(r, f) + S(r, g)

≤ [4−Θ(∞; f)−Θ(∞; g) + 2ε]T (r) + S(r).

If 0 is an e.v.P. of f and g then (3.1) automatically holds. In the same way we can
obtain

(3.2) nT (r, g) ≤ [4−Θ(∞; f)−Θ(∞; g) + 2ε] T (r) + S(r).

Combining (3.1) and (3.2) we see that

[n− 4 + Θ(∞; f) + Θ(∞; g)− 2ε] T (r) ≤ S(r),

which leads to a contradiction for 0 < ε <
Θ(∞; f) + Θ(∞; g)

2
.

Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. �

Proof of Theorem 1.3. Let F , G be given by (2.1). Then F and G share (1, 4),
(∞;∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Now using Lemmas 2.3, 2.4, 2.5 and 2.9 and
proceeding in the same way as done in Case 1 of Theorem 1.1 we can deduce a
contradiction.
Case 2. Let H ≡ 0. If n ≥ 4 the theorem follows from Lemma 2.16. So we will
prove the theorem for n = 3. Clearly by Lemma 2.12 F and G share (1,∞) and
(∞,∞). Suppose F 6≡ G. Proceeding as in the proof of Lemma 2.16 we can obtain
(2.4) and (2.5). So using Lemma 2.3 we have

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F ) ≤ 4−Θ(∞; f)−Θ(∞; g)
3

T1(r) + S1(r).

Noting that 4 − Θ(∞; f) − Θ(∞; g) < 3, using Lemma 2.15 we FG ≡ 1 which is
impossible. Hence by Lemma 2.10 we get f ≡ g. �

Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share (1, 5),
(∞;∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g.
Then by Lemma 2.4 we get Φ 6≡ 0. Noting that f and g share (0, 0) implies
N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g) from Lemmas 2.3, 2.5 and 2.9 we get for
ε > 0

nT (r, f)(3.3)
≤ 3N(r, 0; f) + N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f)

+N(r,∞; g)− 3NL(r, 1;F )− 4NL(r, 1;G) + S(r, f) + S(r, g)
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≤ 3
n− 2

[NL(r, 1;F ) + NL(r, 1;G)] + 2T (r) + {2−Θ(∞; f)

−Θ(∞; g) + 2ε}T (r)− 3NL(r, 1;F )− 4NL(r, 1;G) + S(r).
≤ [4−Θ(∞; f)−Θ(∞; g) + 2ε] T (r) + S(r).

If 0 is an e.v.P. of f and g then (3.3) automatically holds.
In the same way we can obtain

(3.4) nT (r, g) ≤ [4−Θ(∞; f)−Θ(∞; g) + 2ε] T (r) + S(r).

From (3.3) and (3.4) we see that

[n− 4 + Θ(∞; f) + Θ(∞; g)− 2ε] T (r) ≤ S(r),

which leads to a contradiction for 0 < ε <
n− 4 + Θ(∞; f) + Θ(∞; g)

2
.

Case 2. Let H ≡ 0. Now proceeding in the same way as in the proof of Case
2 of Theorem 1.3 and noting that f , g share (0, 0) together with fn−1(f + a) =
gn−1(g + a) implies f and g share (0,∞) we can prove f ≡ g. �

Proof of Theorem 1.4. Let F , G be given by (2.1). Then F and G share (1, 2),
(∞;∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g. Then
by Lemma 2.4 and Lemma 2.5 we get Φ 6≡ 0. Noting that f and g share (∞,∞)

implies N(r,∞; f) =
1
2
N(r,∞; f) +

1
2
N(r,∞; g) from Lemmas 2.3, 2.9 and 2.14

with m = 2 we obtain for ε > 0

nT (r, f)(3.5)
≤ N(r, 0; f) + N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f)

+N(r,∞; g)−NL(r, 1;G) + S(r, f) + S(r, g)
≤ 2N(r, 0; f) + T (r, f) + T (r, g) + N(r,∞; f) + N(r,∞; g)−NL(r, 1;G)

+S(r, f) + S(r, g)

≤ 2
n− 2

NL(r, 1;F ) + 2T (r) + N(r,∞; f) + N(r,∞; g) + S(r, f) + S(r, g)

≤ [2 +
2

3(n− 2)
] T (r) + [1 +

1
3(n− 2)

] {N(r,∞; f) + N(r,∞; g)}

+S(r, f) + S(r, g)

≤ [4 +
4

3(n− 2)
− 3n− 5

3(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}]T (r) + S(r).

If 0 is an e.v.P. of f and g then (3.5) autoamtically holds.
In a similar manner we can obtain

(3.6) nT (r, g) ≤ [4 +
4

3(n− 2)
− 3n− 5

3(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}] T (r) + S(r).
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Combining (3.5) and(3.6) we see that

(3.7) [n− 4− 4
3(n− 2)

+
3n− 5

3(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}] T (r) ≤ S(r).

Since Θ(∞; f) + Θ(∞; g) >
4

3n− 5
there exists a δ > 0 such that

Θ(∞; f) + Θ(∞; g) =
4

3n− 5
+ δ.

If we choose 0 < ε <
δ

2
then from (3.7) we can deduce a contradiction. Hence this

subcase does not hold.
Case 2. Let H ≡ 0. Now using Lemma 2.16 we can prove f ≡ g. �

Proof of Theorem 1.5. Let F , G be given by (2.1). Then F and G share (1, 3),
(∞;∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g. Then by
Lemma 2.4 we get Φ 6≡ 0. Hence from Lemmas 2.3, 2.5, 2.9 and 2.14 with m = 3
we obtain for ε > 0

nT (r, f)(3.8)
≤ N(r, 0; f) + N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f)

+N(r,∞; g)−NL(r, 1;F )− 2NL(r, 1;G) + S(r, f) + S(r, g)

≤ 2
n− 2

{NL(r, 1;F ) + NL(r, 1;G)}+ T (r, f) + T (r, g) + N(r,∞; f)

+N(r,∞; g)−NL(r, 1;F )− 2NL(r, 1;G) + S(r, f) + S(r, g)

≤ 4− n

n− 2
NL(r, 1;F ) + 2T (r) + N(r,∞; f) + N(r,∞; g)

+S(r, f) + S(r, g)

≤ [2 +
4− n

4(n− 2)
] T (r) + [1 +

4− n

8(n− 2)
] {N(r,∞; f) + N(r,∞; g)}

+S(r, f) + S(r, g)

≤ [4 +
4− n

2(n− 2)
− 7n− 12

8(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}]T (r) + S(r)

≤ [3 +
n

2(n− 2)
− 7n− 12

8(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}] T (r) + S(r).

If 0 is an e.v.P. of f and g then (3.8) autoamtically holds.
In a similar manner we can obtain

(3.9) nT (r, g) ≤ [3 +
n

2(n− 2)
− 7n− 12

8(n− 2)
{Θ(∞; f) + Θ(∞; g)− 2ε}]T (r) + S(r).
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Combining (3.8) and (3.9) we see that

(3.10) [n− 3− n

2(n− 2)
+

7n− 12
8(n− 2)

{Θ(∞; f) + Θ(∞; g)− 2ε}] T (r) ≤ S(r).

Since Θ(∞; f) + Θ(∞; g) >
4n

7n− 12
there exists a δ > 0 such that

Θ(∞; f) + Θ(∞; g) =
4n

7n− 12
+ δ.

If we choose 0 < ε <
δ

2
then from (3.10) we can obtain a contradiction. Hence this

subcase does not hold.
Case 2. Let H ≡ 0. Now we can prove f ≡ g in the line of the proof of Case 2 of
Theorem 1.2. �
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