JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 3, September 2009

ON WEAKLY sγ-CONTINUOUS FUNCTIONS

WON KEUN MIN*

ABSTRACT. In [6], the author introduced the concepts of $s\gamma$ -open sets and $s\gamma$ -continuous functions. In this paper, we introduce the concept of weak $s\gamma$ -continuity which is a generalization of $s\gamma$ -continuity and weak continuity and investigate characterizations for such functions.

1. Introduction

Let X be a topological space on which no separation axioms are assumed unless explicit stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by cl(S) (resp. int(S)). A subset S of X is called a *semi-open* [3] (resp. β -open [7], preopen [4], regular open [1]) set if $S \subseteq cl(int(S))$ (resp. $S \subseteq cl(int(cl(S))), S \subseteq int(cl(S)), S =$ int(cl(S))). The complement of a semi-open (resp. β -open, preopen, regular open) set is called a *semi-closed* (resp. β -closed, preclosed, regular closed) set.

Let X be a nonempty set and P(X) the power set of X. A subclass $\tau \subseteq P(X)$ is called a *supratopology* on X [5] if $X \in \tau$ and τ is closed under arbitrary union. (X, τ) is called a supratopological space. The members of τ are called *supraopen* sets. The complement of supraopen sets are called *supraclosed* sets. Let (X, τ) be a topological space. Then τ^* is called an *associated supratopology* with τ if $\tau \subseteq \tau^*$.

Let (X, τ) be a supratopological space and let $S(x) = \{A \in \tau : x \in A\}$ for each $x \in X$. Then we call $\mathbf{S}_x = \{A \subseteq X : \text{there exists } \mu \subseteq S(x) \}$ such that μ is finite and $\cap \mu \subseteq A\}$ the supra-neighborhood filter at x[6]. A filter \mathbf{F} on X supra-converges [6] to x if \mathbf{F} is finer than the supraneighborhood filter \mathbf{S}_x . A subset U of X is called an $s\gamma$ -open set [6] in Xif whenever a filter \mathbf{F} on X supra-converges to x and $x \in U, U \in \mathbf{F}$. The

Received April 27, 2009; Accepted August 14, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 54C10.

Key words and phrases: associated supratopology, S-continuous, $s\gamma$ -open set, $s\gamma$ -continuous, weakly $s\gamma$ -continuous.

Won Keun Min

class of all $s\gamma$ -open sets in X will be denoted by $s\gamma(X)$. In particular, The class of all $s\gamma$ -open sets induced by the supratopology τ will be denoted by $s\gamma_{\tau}(X)$.

For $A \subseteq X$, the $s\gamma$ -interior of A in X, denoted by $s_{\gamma}I(A)$, is the union of all $s\gamma$ -open sets contained in A.

 $s_{\gamma}C(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in \mathbf{S}_x\}.$ We call $s_{\gamma}C(A)$ the s_{γ} -closure of A.

THEOREM 1.1. [6] Let (X, τ) be a supratopological space and $A \subseteq X$. (1) $s_{\gamma}I(A) \subseteq A$ and $A \subseteq s_{\gamma}C(A)$;

(2) A is s γ -open if and only if $A = s_{\gamma}I(A)$;

(3) A is s γ -closed if and only if $A = s_{\gamma}C(A)$;

(4) $s_{\gamma}I(A) = X - s_{\gamma}C(X - A)$ and $s_{\gamma}C(A) = X - s_{\gamma}I(X - A)$.

DEFINITION 1.2. Let (X, τ) and (Y, μ) be topological spaces and τ^* an associated supratopology with τ . A function $f: X \to Y$ is called

(1) S-continuous [5] if the inverse image of each open set of Y is supraopen in X;

(2) $s\gamma$ -continuous [6] if the inverse image of each open set of Y is an $s\gamma$ -open set in X;

(3) weakly continuous [2] if for each x and each open set V of f(x), there exists an open set U in X such that $f(U) \subset cl(V)$.

2. Weakly $s\gamma$ -continuous functions

DEFINITION 2.1. Let (X, τ) and (Y, μ) be topological spaces and τ^* an associated supratopology with τ . Then a function $f : (X, \tau) \to (Y, \mu)$ is said to be *weakly s* γ -continuous if for $x \in X$ and each open subset V containing f(x), there is an s γ -open subset U containing x such that $f(U) \subseteq cl(V)$.

From Definition 1.2 and 2.1, we get the following implications but the converses are not always true as shown in the next examples:

 $\begin{array}{ccc} \text{continuous} & \to & S\text{-continuous} & \to & s\gamma\text{-continuous} \\ & \downarrow & & \downarrow \\ \text{weakly continuous} & \to & \text{weakly } s\gamma\text{-continuous} \end{array}$

EXAMPLE 2.2. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}, X\}$, $\tau^* = \{\emptyset, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ be a topology and an associated supra-topology, respectively. Then $s\gamma(X) = \{\emptyset, \{c\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Consider a function $f : X \to X$ defined as follows

f(a) = b, f(b) = f(d) = d, f(c) = c. Then f is weakly s γ -continuous but it is not s γ -continuous.

EXAMPLE 2.3. Let $X = \{a, b, c\}$. Let $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$, $\tau^* = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ be a topology and an associated supra-topology, respectively. Then $s\gamma(X) = P(X)$. Consider a function $f : X \to X$ defined as follows f(a) = a, f(b) = c, f(c) = b. Then f is weakly $s\gamma$ -continuous. Take an open set $V = \{c\}$ containing f(b) = c for $b \in X$. But there is no any open set U containing $\{b\}$ such that $f(U) \subseteq cl(\{c\}) = \{c\}$. Thus f is not weakly continuous.

THEOREM 2.4. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $f : (X, \tau) \to (Y, \mu)$ is a function, then the following statements are equivalent:

(1) f is weakly $s\gamma$ -continuous.

(2) $f^{-1}(V) \subseteq s_{\gamma}I(f^{-1}(cl(V)))$ for every open subset V of Y. (3) $s_{\gamma}C(f^{-1}(int(A))) \subseteq f^{-1}(A)$ for every closed set A of Y. (4) $s_{\gamma}C(f^{-1}(int(cl(B)))) \subseteq f^{-1}(cl(B))$ for every set B of Y. (5) $f^{-1}(int(B)) \subseteq s_{\gamma}I(f^{-1}(cl(int(B))))$ for every set B of Y. (6) $s_{\gamma}C(f^{-1}(V)) \subseteq f^{-1}(cl(V))$ for every open subset V of Y.

Proof. (1) \Rightarrow (2) Let V be an open subset in Y and $x \in f^{-1}(V)$. By hypothesis, there exists an $s\gamma$ -open subset U of X containing x such that $f(U) \subseteq cl(V)$. Since $x \in U \subseteq f^{-1}(cl(V))$, we have $x \in s_{\gamma}I(f^{-1}(cl(V)))$. Hence $f^{-1}(V) \subseteq s_{\gamma}I(f^{-1}(cl(V)))$.

 $(2) \Rightarrow (3)$ Let A be a closed subset in Y. From (2) and Theorem 1.1, it follows

$$f^{-1}(Y-A) \subseteq s_{\gamma}I(f^{-1}(cl(Y-A)))$$

= $s_{\gamma}I(f^{-1}(Y-int(A)))$
 $\subseteq X - s_{\gamma}C(f^{-1}(int(A))).$

Hence $s_{\gamma}C(f^{-1}(int(A))) \subseteq f^{-1}(A)$.

 $(3) \Rightarrow (4)$ For $B \subseteq Y$, it follows from (3),

 $(4) \Rightarrow (5)$ For $B \subseteq Y$, from (4) and Theorem 1.1, it follows

$$f^{-1}(int(B)) = X - f^{-1}(cl(Y - B))$$

$$\subseteq X - s_{\gamma}C(f^{-1}(int(cl(Y - B))))$$

$$= s_{\gamma}I(f^{-1}cl(int(B))).$$

Thus (5) is obtained.

Won Keun Min

 $(5) \Rightarrow (6)$ Let V be an open subset of Y. Suppose $x \notin f^{-1}(cl(V))$. Then $f(x) \notin cl(V)$ and so there exists an open set U containing f(x)such that $U \cap V = \emptyset$ and so $cl(U) \cap V = \emptyset$. By (5), $x \in f^{-1}(U) \subseteq$ $s_{\gamma}I(f^{-1}(cl(U)))$. Then by definition of s_{γ} -interior, there exists an s_{γ} open set G containing x such that $x \in G \subseteq f^{-1}(cl(U))$. Since $cl(U) \cap$ $V = \emptyset$ and $f(G) \subseteq cl(U)$, we have $G \cap f^{-1}(V) = \emptyset$ and so $x \notin$ $s_{\gamma}C(f^{-1}(V))$. Hence $s_{\gamma}C(f^{-1}(V)) \subseteq f^{-1}(cl(V))$.

 $(6) \Rightarrow (1)$ Let $x \in X$ and V an open set in Y containing f(x). Since $V = int(V) \subseteq int(cl(V))$, by (6),

$$x \in f^{-1}(V) \subseteq f^{-1}(int(cl(V)))$$

= $X - f^{-1}(cl(Y - cl(V)))$
 $\subseteq X - s_{\gamma}C(f^{-1}(Y - cl(V)))$
= $s_{\gamma}I(f^{-1}(cl(V))).$

This implies $x \in s_{\gamma}I(f^{-1}(cl(V)))$, and so there exists an $s\gamma$ -open subset U in X such that $U \subseteq f^{-1}(cl(V))$. Hence f is weakly $s\gamma$ -continuous.

REMARK 2.5. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $\tau = \tau^*$, then obviously $s\gamma(X) = \tau$.

From Theorem 2.4 and Remark 2.5, we have the next corollary.

COROLLARY 2.6. Let (X, τ) and (Y, μ) be topological spaces. If $f : (X, \tau) \to (Y, \mu)$ is a function, then the following statements are equivalent:

(1) f is weakly continuous.

(2) $f^{-1}(V) \subseteq int(f^{-1}(cl(V)))$ for every open subset V of Y. (3) $cl(f^{-1}(int(A))) \subseteq f^{-1}(A)$ for every closed set A of Y. (4) $cl(f^{-1}(int(cl(B)))) \subseteq f^{-1}(cl(B))$ for every set B of Y. (5) $f^{-1}(int(B)) \subseteq int(f^{-1}(cl(int(B))))$ for every set B of Y.

(6) $cl(f^{-1}(V)) \subseteq f^{-1}(cl(V))$ for every open subset V of Y.

THEOREM 2.7. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $f : (X, \tau) \to (Y, \mu)$ is a function, then the following statements are equivalent:

(1) f is weakly $s\gamma$ -continuous.

(2) $s_{\gamma}C(f^{-1}(int(K))) \subseteq f^{-1}(K)$ for every regular closed set K of Y. (3) $s_{\gamma}C(f^{-1}(int(cl(G)))) \subseteq f^{-1}(cl(G))$ for every β -open set G of Y. (4) $s_{\gamma}C(f^{-1}(int(cl(U)))) \subseteq f^{-1}(cl(U))$ for every semiopen set U of

Y.

Proof. (1) \Rightarrow (2) Let K be any regular closed set of Y. Then K is also closed, by Theorem 2.4(3), we have $s_{\gamma}C(f^{-1}(int(K))) \subseteq f^{-1}(K)$.

(2) \Rightarrow (3) Let G be any β -open set; then $cl(G) \subseteq cl(int(cl(G))) \subseteq$ cl(G), and so cl(G) is regular closed. By (2), we have $s_{\gamma}C(f^{-1}(int(cl(G))))$ $\subseteq f^{-1}(cl(G)).$

 $(3) \Rightarrow (4)$ It is obvious since every semiopen set is β -open.

 $(4) \Rightarrow (1)$ Let V be any open set of Y. Then by (4),

$$s_{\gamma}C(f^{-1}(V)) \subseteq s_{\gamma}C(f^{-1}(int(cl(V)))) \subseteq f^{-1}(cl(V)).$$

Hence from Theorem 2.4, f is weakly $s\gamma$ -continuous.

COROLLARY 2.8. Let (X, τ) and (Y, μ) be topological spaces. If $f: (X,\tau) \to (Y,\mu)$ is a function, then the following statements are equivalent:

(1) f is weakly continuous.

- (2) $cl(f^{-1}(int(K))) \subseteq f^{-1}(K)$ for every regular closed set K of Y. (3) $cl(f^{-1}(int(cl(G)))) \subseteq f^{-1}(cl(G))$ for every β -open set G of Y. (4) $cl(f^{-1}(int(cl(U)))) \subseteq f^{-1}(cl(U))$ for every semiopen set U of Y.

THEOREM 2.9. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $f: (X, \tau) \to (Y, \mu)$ is a function, then the following statements are equivalent:

(1) f is weakly $s\gamma$ -continuous.

(2) $s_{\gamma}C(f^{-1}(int(cl(G)))) \subseteq f^{-1}(cl(G))$ for every preopen subset G of Y.

(3) $s_{\gamma}C(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every preopen subset G of Y. (4) $f^{-1}(G) \subseteq s_{\gamma}I(f^{-1}(cl(G)))$ for every preopen subset G of Y.

Proof. (1) \Rightarrow (2) For any preopen set G in Y, cl(G) = cl(int(cl(G))). Let A = int(cl(G)). Then from hypothesis, it follows that $s_{\gamma}C(f^{-1}(A)) \subseteq$ $f^{-1}(cl(A))$. This implies $s_{\gamma}C(f^{-1}(int(cl(G)))) \subseteq f^{-1}(cl(G))$.

 $(2) \Rightarrow (3)$ Obvious.

 $(3) \Rightarrow (4)$ Let G be any preopen set in Y. Then from (3), it follows that

$$f^{-1}(G) \subseteq f^{-1}(int(cl(G)))$$

= $X - f^{-1}(cl(Y - cl(G)))$
 $\subseteq X - (s_{\gamma}C(f^{-1}(Y - cl(G))))$
= $s_{\gamma}I(f^{-1}(cl(G))).$

Hence we have (4).

Won Keun Min

 $(4) \Rightarrow (1)$ Since every open set is preopen, from (4) and Theorem 2.4, f is weakly $s\gamma$ -continuous.

COROLLARY 2.10. Let (X, τ) and (Y, μ) be topological spaces. If $f : (X, \tau) \to (Y, \mu)$ is a function, then the following statements are equivalent:

(1) f is weakly continuous.

(2) $cl(f^{-1}(int(cl(G)))) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y. (3) $cl(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y.

(4) $f^{-1}(G) \subseteq int(f^{-1}(cl(G)))$ for every preopen set G of Y.

References

- [1] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1966.
- [2] N. Levine, A decomposition of continuity, Amer. Math. Monthly **68** (1961), 44-46.
- [3] —, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [4] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 53 (1982), 47-53.
- [5] A. S. Mashhourr, A. A. Allam, F. S. Mahmoud and F. H. Khadr, On supratopological spaces, Indian J. Pure Appl. Math. 14 (1983), no. 4, 502-510.
- [6] W. K. Min, On supra-convergence of filters, Indian Journal of Pure and Applied Mathematics 34 (2003), no. 12, 1719-1726.
- [7] O. Njástad, On some classes of nearly open sets, pacific journal of mathematics 15 (1964), no. 3, 961-970.

*

Department of Mathematics Kangwon National University Chuncheon 200-701, Republic of Korea *E-mail*: wkmin@cc.kangwon.ac.kr