• Title/Summary/Keyword: Serine proteases

Search Result 90, Processing Time 0.035 seconds

Inhibition of Porcine Pancreatic Elastase (PPE) by Korean Mistletoe (Viscum album var.coloratum) Fractions

  • Lyu, Su-Yun;Moon, You-Sun;Kwon, Young-Ju;Joo, Hye-Jin;Park, Won-Bong
    • Natural Product Sciences
    • /
    • v.9 no.4
    • /
    • pp.278-285
    • /
    • 2003
  • The serine proteases such as human leukocyte elastase (HLE) and porcine pancreatic elastase (PPE) are classified in the chymotrypsin family, and possibly the most destructive enzymes having the ability to degrade virtually all of the connective components in the body. In the present study, the extracts of water and methanol of Korean mistletoe (Viscum album var. coloratum) inhibited significantly the PPE activity. The fractions eluated on Amberlite XAD-2 from methanol extract were further purified on the repeated $SiO_2$ column chromatography and the fractions A, B and C were eluated. The fractions A, B and C at 3 mg/ml inhibited significantly the PPE activity up to 66%, 95% and 85%, respectively. In conclusion, the fraction A assumed as lignans or phenylpropanes, and fraction B and C assumed as triterpenoids showed the PPE inhibitory effects on the PPE and that these compounds in mistletoe may be used for treatment of pathological processes such as age-dependent tissue loss or inflammation.

A Prolyl Endopeptidase-lnhibiting Antioxidant from Phyllanthus ussurensis

  • Chung, Shin-kyo;Nam, Ji-Ae;Jeon, So-Young;Kim, Sang-ln;Lee, Hee-Ju;Chung, Tai-Ho;Song, Kyung-Sik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1024-1028
    • /
    • 2003
  • A prolyl endopeptidase inhibitor was isolated from the ethyl acetate soluble fraction of Phyllanthus ussurensis. The active compound was identified as an ellagitannin, corilagin. It was shown to non-competitively inhibit prolyl endopeptidase (PEP) with the $IC_{50}$ value of $1.17 \times $10^{-6}\mu$M. The Ki value was $6.70 \times 10^{-7}$ M. Corilagin was less inhibitory to other serine proteases such as chymotrypsin, trypsin, and elastase, indicating that it was relatively a specific inhibitor of PEP. Corilagin also effectively inhibited reactive oxygen species such as hydroxide and superoxide anion radical, hydrogen peroxide, and DPPH. Especially, corilagin showed potent scavel1ging activity on the superoxide anion radical in the ESR method ($IC_{50} =3.79 \times 10^{-6}$M) as well as xanthine oxidase system.

Identification of Inducible Genes during Mast Cell Differentiation

  • Lee Eunkyung;Kang Sang-gu;Chang Hyeun Wook
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.232-237
    • /
    • 2005
  • Mast cells play an important role in allergic inflammation by releasing their bioactive mediators. The function of mast cells is enhanced by stimulation because of the induction of specific genes and their products. While many inducible genes have been elucidated, we speculated that a significant number of genes remain to be identified. Thus, we applied differential display (dd) PCR to establish a profile of the induced genes in bone marrow-derived mast cells (BMMCs) after they were co-cultured with 3T3 fibroblasts. To date, 150 cDNA fragments from the connective-type mast cells (CTMCs) were amplified. Among them, thirty cDNA fragments were reamplified for cloning and sequencing. The ddPCR strategy revealed that serine proteases were the most abundant genes among the sequenced clones induced during the maturation. Additionally, unknown genes from the co-culture of BMMCs with 3T3 fibroblasts were identified. We confirmed their induction in the CTMCs by Northern blot analysis and RT-PCR. Characterization of these induced genes during the maturation processes will provide insight into the functions of mast cells.

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli

  • Kim, Tae Ryeon;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.401-406
    • /
    • 1995
  • The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.

The impact of COVID-19 on human reproduction and directions for fertility treatment during the pandemic

  • Lee, Dayong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.273-282
    • /
    • 2021
  • Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, resulting in a pandemic. The virus enters host cells through angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2). These enzymes are widely expressed in reproductive organs; hence, coronavirus disease 2019 (COVID-19) could also impact human reproduction. Current evidence suggests that sperm cells may provide an inadequate environment for the virus to penetrate and spread. Oocytes within antral follicles are surrounded by cumulus cells, which rarely express ACE2 and TMPRSS2. Thus, the possibility of transmission of the virus through sexual intercourse and assisted reproductive techniques seems unlikely. Early human embryos express coronavirus entry receptors and proteases, implying that human embryos are potentially vulnerable to SARS-CoV-2 in the early stages of development. Data on the expression of ACE2 and TMPRSS2 in the human endometrium are sparse. Moreover, it remains unclear whether SARS-CoV-2 directly affects the embryo and its implantation. A study of the effect of SARS-CoV-2 on pregnancy showed an increase in preterm delivery. Thus, vertical transmission of the virus from mother to fetus in the third trimester is possible, and further data on human reproduction are required to establish this possibility. Based on analyses of existing data, major organizations in this field have published guidelines on the treatment of infertility. Regarding these guidelines, despite the COVID-19 pandemic, reproductive treatment is crucial for the well-being of society and must be continued under suitable regulations and good standard laboratory practice protocols.

Effect of Cervi Pantotrichum Cornu Herbal acupuncture on protease activities, antioxidant in Rheumatoid arthritis rats (류마티스 관절염 실험용쥐의 활액에서 단백분해효소의 활성 및 항산화에 대한 녹용약침의 효과)

  • Park, Sang-Dong;Kim, Min-Jeong;Lee, A-Ram;Jang, Jun-Hyouk;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.51-64
    • /
    • 2002
  • We have compared(using the same series of experimental tissue samples) the levels of proteolytic enzyme activities and free radical-induced protein damage in synovial fluid from RA and CPH cases. Many protease types showed significantly increased (typically by a factor of approximately 2-3-fold) activity in RA, compared to normal rats. However, CPH significantly reduced the cytoplasmic enzyme activities of arginyl aminopeptidase, leucyl aminopeptidase, pyroglutamyl aminopeptidase, tripeptidyl aminopeptidase, and proline endopeptidase to almost about 1/10 each. For the Iysosomal proteases, synovial fluid samples from RA rats, CPH significantly reduced the enzyme activities of cathepsin B, dipeptidyl aminopeptidase I and dipeptidyl aminopeptidase II. In extracellular matrix degrading(collagenase, tissue elastase) and leukocyte as sociated proteases (leukocyte elastase, cathepsin G), CPH decreased these enzyme activities of collagenase, tissue elastase and leukocyte associated elastase in RA. In cytoplasmic and lysosomal protease activities in plasma from RA. CPH and normal plasma samples were not significantly different, suggesting that altered activity of plasma proteases (particularly those enzymes putatively involved in the immune response) is not a contributory factor in the pathogenesis of RA. In addition, the level of free radical induced damage to synovial fluid proteins was approximately twice that in RA, compared with CPH. CPH significantly decreased the level of ROS induced oxidative damage to synovial fluid proteins (quantified as protein carbonyl derivative). Therefore we conclude that both proteolytic enzymes and free radicals are likely to be of equal potential importance as damaging agents in the pathogenesis of inflammatory joint disease, and that the design of novel therapeutic strategies for patients with the latter disorder should include both protease inhibitory and free radical scavenging elements. In addition, the protease inhibitory element should be designed to inhibit the action of a broad range of protease mechanistic types (i.e. cysteine-, metallo- and serine- proteinases and peptidases). However, increased protein damage induced by ROS could not be rationalised in terms of compromised antioxidant total capacity, since the latter was not significantly altered in RA synovial fluid or plasma compared with CPH.

  • PDF

Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 (Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성)

  • Lee, Yu-Kyong;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.78-82
    • /
    • 2013
  • A novel Chryseobacterium sp. JK1 strain isolated from soil had been reported that this isolate produced large amount of extracellular protease at mesophilic temperature in previous study. The optimal temperature and pH of extracellular protease were $40^{\circ}C$ and 7.0, respectively, showing narrow range of optimal temperature and relatively broad activity from pH 6.0 to 9.0. In addition, the protease showed greatest activity against skim milk and lowest against bovine serum albumin (BSA). The protease strongly inhibited by ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA) or phenylmethylsulfonyl fluoride (PMSF), and addition of cation $Ag^+$ or $Cu^{2+}$, and slightly inhibited by $Al^{3+}$. No significant inhibition was found with pepstatin, and addition of cation, $K^+$, $Ca^{2+}$, $Na^+$, $Fe^{2+}$ or $Mg^{2+}$. On the contrary, protease was enhanced by addition of divalent cation $Mn^{2+}$ (5 mM). Zymography analysis of concentrated culture supernatant revealed two major bands at 67 and 145 kDa. These results suggest that Chryseobacterium sp. JK1 strain produced extracellular neutral serine proteases which could apply in food industry.

Purification and Assay of Extracellular Autolysin from Moraxella sp. CK-l (Moraxella sp. CK-1의 세포외 Autolysin의 분리 정제 및 활성도 측정)

  • 오영상;이장현;한명수;윤문영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Moraxella sp. CK-l is known to inhibits the growth of Anabaena cylindrica, a cyanobacterium. It has been documented that the ability of this growth inhibition of Anabaena cylindrica was attributed to extracellular autolysin from Moraxella sp. CK-l. However, it remains to be elucidated identification and characterization of autolysin have yet been elucidated. In this study, we tried to purify and identify autolysin secreted from Moraxella sp. CK-l. Cells were grown in a complex liquid medium (BGC-11) and culture supernatants were collected, followed by ammonium sulfate fractionation. Fractions were further separated with anion exchange column, Mono-Q, in FPLC system and analyzed by SDS/PAGE. The fraction containing high autolysin activity showed a single distinct protein peak in anion column and molecular mass of about 17 kDa in SDS/PAGE. Nterminal amino acid sequencing of the protein was analyzed, of which result showed the homology with some proteases, including extracellular serine protease, Dichelobacter nodosus.

Production and Characterization of Alkaline Protease of Micrococcus sp. PS-1 Isolated from Seawater (해수에서 분리한 Micrococcus sp. PS-1이 생산하는 단백질 분해효소의 생산과 효소학적 특성)

  • Jin, Young-Rang;Yu, Sun-Nyoung;Kim, Kwang-Youn;Kim, Sang-Hun;Park, Seul-Ki;Kim, Hyeun-Kyeung;Lee, Yong-Seok;Choi, Yong-Lark;Ji, Jae Hoon;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.273-281
    • /
    • 2013
  • The purpose of this research was to investigate the production and characterization of alkaline protease from Micrococcus sp. PS-1 newly isolated from seawater. Micrococcus sp. PS-1 was grown in Luria-Bertani (LB) medium. Its optimal temperature and pH for growth were $30^{\circ}C$ and 7.0, respectively. The effect of nitrogen sources was investigated on optimal enzyme production. A high level of alkaline protease production occurred in LB broth containing 2% skimmed milk. The protease was purified in a 3-step procedure involving ultrafiltration, acetone precipitation, and dialysis. The procedure yielded a 16.43-purification fold, with a yield of 54.25%. SDS-PAGE showed that the enzyme had molecular weights of 35.0 and 37.5 kDa. Its maximum protease activity was exhibited at pH 9.0 and $37^{\circ}C$, and its activity was stable at pH 8.0-11.0 and $25-37^{\circ}C$. The protease activity was strongly inhibited by PMSF, EDTA, and EGTA. Taken together, the results demonstrate that the protease enzyme from Micrococcus sp. PS-1 probably belongs to a subclass of alkaline metallo-serine proteases.

Streptomyces griseus HH1, An A-factor Deficient Mutant Produces Diminished Level of Trypsin and Increased Level of Metalloproteases

  • Kim, Jung-Mee;Hong, Soon-Kwang
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • A-factor I a microbial hormone that can positively control cell differentiation leading to spore formation and secondary metabolite formation in Streptomyces griseus. to identify a protease that is deeply involved in the morphological and physiological differentiation of Streptomyces, the proteases produced by Streptomyces griseus IFO 13350 and its A-factor deficient mutant strain, Streptomyces griseus HH1, as well as Streptomyces griseus HH1 transformed with the afsA gene were sturdied. In general Streptomyces griseus showed a higher degree of cell growth and protease activity in proportion to its ability to produce a higher amount of A-factor. In particular, the specific activity of the trypsin of Streptomyces griseus IFO 13350 was greatly enhanced more than twice compared with that of Streptomyces griseus HH1 in the later stage of growth. The specific activity of the metalloprotease of Streptomyces griseus HH1 was greatly enhanced more than twice compared with that of Streptomyces griseus IFO 13350, and this observation was reversed in the presence of thiostreptione, However, Streptomyces griseus HH1 transformed with the afsA gene showed a significantly decreased level of trypsin and metalloprotease activity compared with that of the HH1 strain. There was no significant difference between Streptomyces griseus IFO 13350 and HH1 strain in their chymotrypsin and thiol protease activity, yet the level of leu-amionpeptidase activity was 2 times higher in Streptomyces griseus HH1 than in strain IFO 13350 . Streptomyces griseus HH1 harboring afsA showed a similar level of enzyme activity , however, all the three protease activities sharply increased and the thiol protease activity was critically increased at the end of the fermentation. When a serine protease inhibitor, pefabloc SC, and metalloprotease inhibitor, EDTA, were applied to strain IFO 13350 to examine the in vivo effects of the protease inhibitors on the morpholofical differentiation, the formation of aerial meycelium and spores was delayed by two or three days.

  • PDF