• Title/Summary/Keyword: Separation Ability

Search Result 211, Processing Time 0.025 seconds

A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities (하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구)

  • Park, Chanhyuk;Hong, Seok-Won;Lee, Sanghyup;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

An Analysis of Professional Recognition on 2015 Curriculum Revision (2015 문·이과 통합형 교육과정 개정에 관한 전문가 인식 연구)

  • PARK, So-Young;LEE, Jeong-Ryeol;KANG, Hyeon-Suk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1172-1183
    • /
    • 2015
  • The purpose of this research is to analyze the recognition of the curriculum experts on 2015 integrated liberal arts and natural sciences curriculum revision. Research method is a delphi survey and the subjects are curriculum experts. The research results are as follows. Firstly, experts suggested common education for all students and students' opportunities to choose subjects. Secondly, the direction of curriculum revision was different by school level. The elementary school needs to foster convergence thinking. The middle school needs to educate common basic literacy education and the high school needs both the common education and the free choice of subjects by students. Thirdly, the separation of the liberal arts and natural sciences was caused by the separate thinking of custom, tradition and study and the separate exam application on liberal arts and natural science of college scholastic ability test. The solution about separation problem of liberal arts and natural sciences have been proposed to improve mathematics education and teachers' convergence education competency. Lastly, for the establishment of an 2015, integrated curriculum the reduction of the CSAT test area and the introduction of qualifying examination for English were required.

Capillary Electrochromatography with Liquid Crystal Crown Ether Modified Hybrid Silica Monolith for Analysis of Imidacloprid and Carbendazim in Tomatoes

  • Wang, Mingming;Feng, Rui;Shen, Jing;Chen, Hao;Zeng, Zhaorui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2224-2228
    • /
    • 2012
  • This study describes the ability of capillary electrochromatography (CEC) for the determination of imidacloprid and carbendazim in tomato samples. A novel liquid crystal crown ether modified hybrid silica monolithic column was synthesized, characterized and developed as separation column for the first time. Baseline separation of imidacloprid and carbendazim could be achieved using a mobile phase containing 90% (v/v) 20 mmol/L phosphate buffer (pH 7.0) and 10% (v/v) acetonitrile. The matrix matched calibration curves were linear with correlation coefficient $r^2$ > 0.9998 in the range of 0.20-10.00 mg/L. The limits of detection for imidacloprid and carbendazim were 0.061 and 0.15 mg/kg, respectively, which were below the maximum residue limits established by the European Union as well as Codex Alimentarius. Average recoveries for imidacloprid and carbendazim varied from 101.6-108.0% with relative standard deviations lower than 6.3%. This method was applied to the analysis of tomatoes collected from local markets.

Investigation of Water Channel Formation in Sufonated Polyimides Via Mesoscale Simulation (메조스케일 전산모사를 통한 술폰화 폴리이미드의 수화채널 형성 연구)

  • Park, Chi Hoon;Lee, So Young;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.389-398
    • /
    • 2017
  • The most important characteristic of the polymer electrolyte membranes (PEMs) for fuel cells, the proton conducting ability is mainly influenced by the distribution and morphology of the water channels inside the PEMs. Non-perfluorinated hydrocarbon PEMs are known to have weaker water channels than perfluorinated PEM, Nafion, and thus relatively low proton conducting ability. In this study, we used a mesoscale simulation technique to observe the water channel formation and phase separation behavior of hydrocarbon PEM, sulfonated polyimides, under the humidification condition. It was observed that the water molecules were distributed evenly through the entire hydrophilic region, and clear water clusters were formed only in the sulfonated polyimide having high sulfonation degree. In addition, it was observed that sulfonated polyimides have a difficulty in forming water channel under the low hydrated condition. These results clearly support the theories of the formation of water channels in non-perfluorinated hydrocarbon PEMs, and also well explain the tendency of proton conducting abilities of sulfonated polyimides. Thus, it is confirmed that mesoscale simulation techniques can be very effective in analyzing phase separation behavior and water channel formation in PEMs for fuel cells and elucidating the ion conducting abilities.

Chiral Separation of Derivatized Racemic Alcohols on Substitued Cyclodextrin Stationary Phases by Capillary Gas Chromatography (모세관 기체 크로마토그래피에 의한 치환된 Cyclodextrin 정지상을 이용한 알코올 유도체의 키랄분리)

  • Lee, Sun-Haing;Seo, Yeong-Ju;Lee, Kwang-Pill
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.2
    • /
    • pp.94-102
    • /
    • 1995
  • S-Hydroxypropyl(PH) ${\beta}$-cyclodextrin(hydrophilic), dialkyl(DA)-cyclodextrin(hydrophobic), trifluoroacetyl(TA) ${\gamma}$-cyclodextrin(intermediate) stationary phases were used for gas chromatographic separation of racemic alcohols and their derivatives. All the alcohols used for this experiment were derivatived by using trifluoro acetic anhydride, acetic anhydride, or trichloro acetic anhydride. It is apparent that the enantioselectivity of the enantiomeric pairs was very dependent on the type of acylation reagent. The best experimental condition of optical resolution of the alcohols and their derivatives was different on the polarity of the solute molecules. The chiral separation was also studied depending on temperature, polarity of the column, and hydrogen bonding ability and steric effect between the alchols and CD stationary phase. The chiral recognition mechanism is dependent not upon the kinds of the chiral stationay phases but upon the derivatization of the racemic alchols.

  • PDF

Current Status and Perspectives of Graphene-based Membranes for Gas Separation (그래핀 기반 기체 분리막의 연구동향 및 전망)

  • Yoo, Byung Min;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.216-225
    • /
    • 2017
  • Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.

Design of the Combination and Separation Structures of a Modular Robot (모듈러 로봇의 결합 및 분리 구조 설계)

  • Ryoo, In-Hwan;Lee, Bo-Hee;Khong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3626-3635
    • /
    • 2011
  • The modular robots are a kind of system that was developed to overcome the limitation of the movement for the mobile robot with wheels or legs. In legs type mobile robot case, they are limited for velocity and balance during moving at the uneven terrain. In wheeled mobile robot case, they are also limited to overcome dump, stair and so on. The modular robots can overcome moving limitation because of their transforming ability. However, they are researched not only driving mechanism but also combination mechanism. In this paper we proposed four kinds of unique structure for the combination and separation and also its algorithm. The effectiveness of the structure is verified with building the real structure and taking experiments to the designed modular robot

Adsorption Characteristics of n-Butane and 1-Butene on Mesoporous MCM-41 Containing Silver Ions (은이온이 담지된 메조포러스 MCM-41을 이용한 n-부탄과 1-부텐의 흡착 특성 연구)

  • Kang, Min;Lee, Hyung Ik;Yoon, Dal Young;Ko, Chang Hyun;Kim, Jong-Nam;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.393-398
    • /
    • 2006
  • There have been a lot of works in order to develop an excellent adsorbent for separation of olefin and paraffin. In the present work, the adsorption characteristics of mesoporous MCM-41 containing silver ion for 1-butene and n-butane were studied. The adsorption ability for the 1-butene depending on thermal treatment were also investigated.MCM-41 exhibits much higher adsorption amounts for 1-butene as well as n-butane, compared to those of Ag/13X zeolite. In case of MCM-41 containing silver ion, the adsorption amount of 1-butene dramatically increased due to the ${\pi}$-complexation, whereas the adsorption amount of n-butane decrease. The Ag/MCM-41 after the thermal treatment at 373 K under evacuation exhibit the highest 1-butene/n-butane adsorption ratio, expecially at low pressure (100 Torr).

Cesium removal in water using magnetic materials ; A review (자성체 물질을 이용한 수중의 세슘제거 동향)

  • Yeo, Wooseok;Cho, Byungrae;Kim, Jong Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

Fabrication of triboelectric nanogenerator for self-sufficient power source application (자가발전활용을 위한 마찰전기 나노발전소자의 제작)

  • Shin, S.Y.;Kim, S.J.;Saravanakumar, Balasubramaniam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF