Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.216

Current Status and Perspectives of Graphene-based Membranes for Gas Separation  

Yoo, Byung Min (Department of Energy Engineering, Hanyang University)
Park, Ho Bum (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.27, no.3, 2017 , pp. 216-225 More about this Journal
Abstract
Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.
Keywords
Graphene; Graphene oxide; Membrane; Gas separation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. D. Fischbein and M. Drndic, "Electron beam nanosculpting of suspended graphene sheets", Appl. Phys. Lett., 93, 113107-1 (2008).   DOI
2 K. Celebi, J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J. I. Kye, C. Lee, and H. G. Park, "Ultimate permeation across atomically thin porous graphene", Science, 344, 289 (2014).   DOI
3 S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012).   DOI
4 S. C. O'Hern, M. S. H. Boutilier, J. C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik, "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14, 1234 (2014).   DOI
5 J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, "Graphene nanomesh", Nat. Nanotechnol., 5, 190 (2010).   DOI
6 M. Bieri, M. Treier, J. M. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. L. Feng, K. Mullen, and R. Fasel, "Porous graphenes: two-dimensional polymer synthesis with atomic precision", Chem. Commun., 45, 6919 (2009).
7 M. Segal, "Selling graphene by the ton", Nat. Nanotechnol., 4, 611 (2009).
8 S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4, 217 (2009).   DOI
9 H. Bai, C. Li, X. L. Wang, and G. Q. Shi, "On the Gelation of Graphene Oxide", J. Phys. Chem. C, 115, 5545 (2011).
10 A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials", Nat. Mater., 10, 569 (2011).   DOI
11 F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural Defects in Graphene", ACS Nano, 5, 26 (2011).   DOI
12 R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442 (2012).   DOI
13 C. N. Yeh, K. Raidongia, J. J. Shao, Q. H. Yang, and J. X. Huang, "On the origin of the stability of graphene oxide membranes in water", Nat. Chem., 7, 166 (2015).   DOI
14 H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013).   DOI
15 A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, "Large-area graphene- based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide", Nat. Commun., 7, 1 (2016).
16 M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara, and Y. Matsumoto, "Photochemical engineering of graphene oxide nanosheets", J. Phys. Chem. C, 116, 19822 (2012).   DOI
17 H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013).   DOI
18 T. C. Merkel, H. Q. Lin, X. T. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: An opportunity for membranes", J. Membr. Sci., 359, 126 (2010).   DOI
19 Z. J. Fan, Q. K. Zhao, T. Y. Li, J. Yan, Y. M. Ren, J. Feng, and T. Wei, "Easy synthesis of porous graphene nanosheets and their use in supercapacitors", Carbon, 50, 1699 (2012).   DOI
20 B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).   DOI
21 D. Yoon, Y. W. Son, and H. Cheong, "Negative thermal expansion coefficient of graphene measured by raman spectroscopy", Nano Lett., 11, 3227 (2011).   DOI
22 S. Ghosh, D. L. Nika, E. P. Pokatilov, and A. A. Balandin, "Heat conduction in graphene: experimental study and theoretical interpretation", New J. Phys., 11, 1 (2009).
23 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004).   DOI
24 C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385 (2008).   DOI
25 E. V. Kharanzhevskiy and T. A. Pisareva, "Dispersity of materials obtained by mechanical activation and laser sintering of Al-C systems and used for production of electrochemical capacitors", Colloid J., 74, 373 (2012).   DOI
26 E. G. Steward, B. P. Cook, and E. A. Kellett, "Dependence on temperature of the interlayer spacing in carbons of different graphitic perfection", Nature, 187, 1015 (1960).   DOI
27 L. Huang, C. Li, W. J. Yuan, and G. Q. Shi, "Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels", Nanoscale, 5, 3780 (2013).   DOI
28 S. F. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon, 50, 3210 (2012).   DOI
29 X. F. Ma, M. R. Zachariah, and C. D. Zangmeister, "Crumpled Nanopaper from Graphene Oxide", Nano Lett., 12, 486 (2012).   DOI
30 C. H. Tsou, Q. F. An, S. C. Lo, M. De Guzman, W. S. Hung, C. C. Hu, K. R. Lee, and J. Y. Lai, "Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration", J. Membr. Sci, 477, 93 (2015).   DOI
31 J. H. Lee and J. Kim, "Research trends of metalorganic framework membranes: Fabrication methods ans gas separation applications", Membr. J. 25, 465 (2015).   DOI
32 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
33 K. M. Kyung and J. Y. Park, "Effect of GAC packing mass in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 27, 68 (2017).   DOI
34 S. J. Kim, J. P. Jung, D. J. Kim, and J. H. Kim, "Effect of mesoporous $TiO_2$ in facilitated olefin transport membranes contaning Ag nanoparticles", Membr. J., 25, 398 (2015).   DOI
35 M. Karunakaran, R. Shevate, M. Kumar, and K. V. Peinemann, "$CO_2$-selective PEO-PBT ($PolyActive^{TM}$)/ graphene oxide composite membranes", Chem. Commun., 51, 14187 (2015).   DOI