• Title/Summary/Keyword: Sensor fusion

Search Result 815, Processing Time 0.029 seconds

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

Ultrasonic and Vision Data Fusion for Object Recognition (초음파센서와 시각센서의 융합을 이용한 물체 인식에 관한 연구)

  • Ko, Joong-Hyup;Kim, Wan-Ju;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.417-421
    • /
    • 1992
  • Ultrasonic and vision data need to be fused for efficient object recognition, especially in mobile robot navigation. In the proposed approach, the whole ultrasonic echo signal is utilized and data fusion is performed based on each sensor's characteristic. It is shown to be effective through the experiment results.

  • PDF

Bacillus cereus에 의한 Phospholipase C (PLC) 생산

  • Seo, Guk-Hwa;Lee, Jong-Il;Bornscheuer, Uwe T.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.232-234
    • /
    • 2002
  • Bacillus cereus secretes a nonspecific phospholipase C (PLC) that catalyzes the hydrolysis of phospholipids to yield diacylglycerol and a phosphate monoester. This study focuses on the production of PLC by B. cereus and recombinant E. coli with fusion protein gene (plc::gfp). Fermentation processes have been monitored by a 2-dimensional fluorescence sensor.

  • PDF

UTV localization from fusion of Dead -reckoning and LBL System

  • Woon, Jeon-Sang;Jung Sul;Cheol, Won-Moon;Hong Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.64.4-64
    • /
    • 2001
  • Localization is the key role in controlling the Mobile Robot. In this papers, a development of the sensor fusion algorithm for controling UTV(Unmanned Tracked Vehicle) is presented. The multi-sensocial dead-rocking subsystem is established based on the optimal filtering by first fusing heading angle reading from a magnetic compass, a rate-gyro and two encoders mouned on the robot wheels, thereby computing the deat-reckoned location. These data and the position data provoded by LBL system are fused together by means of an extended Kalman filter. This algorithm is proved by simulation studies.

  • PDF

Development of Multi-Sensor Station for u-Surveillance to Collaboration-Based Context Awareness (협업기반 상황인지를 위한 u-Surveillance 다중센서 스테이션 개발)

  • Yoo, Joon-Hyuk;Kim, Hie-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.780-786
    • /
    • 2012
  • Surveillance has become one of promising application areas of wireless sensor networks which allow for pervasive monitoring of concerned environmental phenomena by facilitating context awareness through sensor fusion. Existing systems that depend on a postmortem context analysis of sensor data on a centralized server expose several shortcomings, including a single point of failure, wasteful energy consumption due to unnecessary data transfer as well as deficiency of scalability. As an opposite direction, this paper proposes an energy-efficient distributed context-aware surveillance in which sensor nodes in the wireless sensor network collaborate with neighbors in a distributed manner to analyze and aware surrounding context. We design and implement multi-modal sensor stations for use as sensor nodes in our wireless sensor network implementing our distributed context awareness. This paper presents an initial experimental performance result of our proposed system. Results show that multi-modal sensor performance of our sensor station, a key enabling factor for distributed context awareness, is comparable to each independent sensor setting. They also show that its initial performance of context-awareness is satisfactory for a set of introductory surveillance scenarios in the current interim stage of our ongoing research.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

A Study of design oil lubricator system using WLAN on based flexible link system (유연링크시스템 기반에서 WLAN 방식을 적용한 퓨전 주유시스템의 구조 설계에 대한 연구)

  • Kim, W.Y.;Hong, J.H.;Jung, J.H.;Song, G.Y.;Song, W.J.;Jung, Y.H.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2357-2360
    • /
    • 2002
  • For the satisfying performance of a oil lubricator, design of a oil controller for the system which meets the required specifications and its supporting hardware that keep their functioning is important. Among the hardware of a control system, oil system are most vulnerable to malfunction. Thus it is necessary to keep track of accurate and reliable oil readings for good fusion oil lubricator performance. In case of oil lubricator, data loss, ssr trigger error faults, they are detected by examining the data system output values and the major values of the system, and then the faults are recognized by the analysis of symptoms of faults. If necessary electronic-sensor values are synthesized according to the types of faults, and then they are used for the controller instead of the raw data. In this paper, a fast-32bit cpu microprocessor applied to the control of flexible link system with the sensor fault problems in the error modulo for exact positioning to show the applicability. It is shown that the fusion oil lubricator can provide a satisfactory loop performance even when the sensor faults occure.

  • PDF

An Intelligence Embedding Quadruped Pet Robot with Sensor Fusion (센서 퓨전을 통한 인공지능 4족 보행 애완용 로봇)

  • Lee Lae-Kyoung;Park Soo-Min;Kim Hyung-Chul;Kwon Yong-Kwan;Kang Suk-Hee;Choi Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.314-321
    • /
    • 2005
  • In this paper an intelligence embedding quadruped pet robot is described. It has 15 degrees of freedom and consists of various sensors such as CMOS image, voice recognition and sound localization, inclinometer, thermistor, real-time clock, tactile touch, PIR and IR to allows owners to interact with pet robot according to human's intention as well as the original features of pet animals. The architecture is flexible and adopts various embedded processors for handling sensors to provide modular structure. The pet robot is also used for additional purpose such like security, gaming visual tracking, and research platform. It is possible to generate various actions and behaviors and to download voice or music files to maintain a close relation of users. With cost-effective sensor, the pet robot is able to find its recharge station and recharge itself when its battery runs low. To facilitate programming of the robot, we support several development environments. Therefore, the developed system is a low-cost programmable entertainment robot platform.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF