• Title/Summary/Keyword: Sensor electrode

Search Result 754, Processing Time 0.035 seconds

Simultaneous measurement of oxygen permeability by using of multi-functional oxygen electrode (다기능 산소전극에 의한 산소투과특성 동시측정)

  • 이동희;정진휘;유형풍;김태진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.532-535
    • /
    • 2000
  • We have fabricated a sensor system for on-line monitoring the oxygen permeability and diffusivity of six different polymer films using the miniaturized 6 cathode(Ag)-single anode(Ag/AgCl) type hexagonal oxygen electrode. This system consists of multiple input front-end electronics, signal conditioning circuit using the embedded microcontroller 80C196KC, PC interface circuit and PC with the OS for microcontroller and the operating program for this system. The digital low-[ass filter was programmed and the simulated filter characteristics were enough to eliminate the noise from sensor signal. According to the experimental results, the linearity coefficients of the output voltage to oxygen partial pressure for each sensor electrode of six cathode type oxygen sensor are 0.998, 0.997, 0.998, 0.997, 0.997, 0.997 respectively, and the response times are all within 4 minutes.

  • PDF

Effects of the Electrical Characteristics of Capacitive Relative Humidity Sensor by Polyimide Film and Upper Electrode Grain by Sputtering Method (폴리이미드 박막과 스퍼터링 방법으로 증착한 상부금속 그레인이 용량형 습도센서의 전기적 특성에 미치는 영향)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.224-228
    • /
    • 2011
  • This research, integratable capacitive relative humidity sensor was produced using polyimide on glass substrate. Also, at the time of upper electrode formation, upper electrode grain size was affected by giving changes to sputtering condition. Through this analyzing electrical characteristics affect from capacitive relative humidity sensor was possible. Capacitance of capacitive relative humidity sensor was 330 pF, linearity of 0.6%FS and it showed less than 3% of low hysterisis. Specially, hysterisis was affected more from interface than interstitial. Also was affected by the grain size which is one of the formation condition of upper electrode.

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

Humidity Sensitive Characterization by Electrode Pattern on the Capacitive Humidity Sensor Using Polyimide (폴리이미드 용량형 습도센서의 전극 패턴에 따른 감습 특성)

  • Park, Sung-Back;Shin, Hoon-Kyu;Lim, Jun-Woo;Chang, Sang-Mok;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.566-570
    • /
    • 2014
  • Electrode pattern effects on the capacitive humidity sensor were investigated. The fabrication of the capacitive humidity sensor was formed with three steps. The bottom electrode was formed on the silicon substrate with Pt/Ti thin layer by using shadow mask and e-beam evaporator. The photo sensitive polyimide was formed on the bottom electrode by using photolithography process as a humidity sensitive thin film. The upper electrode was formed on the polyimide thin film with Pt/Ti thin layer by using e-beam evaporator and lift-off method. Three electrode patterns, such as circle, square, and triangle pattern, were used and changed the sizes to investigate the effects. The capacitances of the sensors were decreased 622 to 584 pF with the area decreament of patterns 250,000 to $196,250{\mu}m^2$. From these results, a capacitive humidity sensor with photo sensitive polyimide is expected to be applied to a high sensitive humidity sensor.

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics (피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성)

  • Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance (드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion (링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작)

  • Sim, Yo-Sub;Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.