Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.9.566

Humidity Sensitive Characterization by Electrode Pattern on the Capacitive Humidity Sensor Using Polyimide  

Park, Sung-Back (Department of Nano Engineering, Dong-A University)
Shin, Hoon-Kyu (National Institute for Nanomaterials Technology, Pohang University of Science and Technology)
Lim, Jun-Woo (Subdivision of Electronic Information Engineering, KyungNam College of Information & Technology)
Chang, Sang-Mok (Department of Nano Engineering, Dong-A University)
Kwon, Young-Soo (Department of Nano Engineering, Dong-A University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.9, 2014 , pp. 566-570 More about this Journal
Abstract
Electrode pattern effects on the capacitive humidity sensor were investigated. The fabrication of the capacitive humidity sensor was formed with three steps. The bottom electrode was formed on the silicon substrate with Pt/Ti thin layer by using shadow mask and e-beam evaporator. The photo sensitive polyimide was formed on the bottom electrode by using photolithography process as a humidity sensitive thin film. The upper electrode was formed on the polyimide thin film with Pt/Ti thin layer by using e-beam evaporator and lift-off method. Three electrode patterns, such as circle, square, and triangle pattern, were used and changed the sizes to investigate the effects. The capacitances of the sensors were decreased 622 to 584 pF with the area decreament of patterns 250,000 to $196,250{\mu}m^2$. From these results, a capacitive humidity sensor with photo sensitive polyimide is expected to be applied to a high sensitive humidity sensor.
Keywords
Capacitive humidity sensor; e-beam evaporation; Electrode pattern; Photo sensitive polyimide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Giachino, Sensors and Actuators, 10, 239 (1986).   DOI   ScienceOn
2 S. Moller, J. Lin, and E. Obermeier, Sensors and Actuators B, 24, 343 (1995).
3 R. E. Cavicchi, S. Semancik, and C. J. Taylor, J. Electroceramics, 9, 155 (2002).   DOI   ScienceOn
4 Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, Sensors and Actuators A, 92, 80 (2001).   DOI   ScienceOn
5 D. G. Yarkin, Sensors and Actuators A, 107, 1 (2003).   DOI   ScienceOn
6 N. Zhang, K. Yu, Z. Zhu, and D. Jiang, Sensors and Actuators A, 143, 245 (2008).   DOI   ScienceOn
7 S. P. Yawale, S. S. Yawale, and G. T. Landhade, Sensors and Actuators A, 135, 388 (2007).   DOI   ScienceOn
8 T. J. Harpster, B. Stark, and K. Najafi, Sensors and Actuators A, 95, 100 (2002).   DOI   ScienceOn
9 Y. Ma, S. Ma, T. Wang, and W. Fang, Sensors and Actuators A, 49, 47 (1995).   DOI   ScienceOn
10 M. Bjorkqvist, J. Salonen, J. Paski, and E. Laine, Sensors and Actuators A, 112, 244 (2004).   DOI   ScienceOn
11 E. J. Connolly, G. M. O'Halloran, H. T. M. Pham, P. M. Sarro, and P. J. French, Sensors and Actuators A, 99, 25 (2002).   DOI   ScienceOn
12 F. Reverter and O. Casas, Sensors and Actuators A, 143, 315 (2008).   DOI   ScienceOn
13 J. Das, S. M. Hossain, S. Chakraborty, and H. Saha, Sensors and Actuators A, 94, 44 (2001).   DOI   ScienceOn
14 A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, and A. Boyer, Sensors and Actuators A, 79, 189 (2000).   DOI   ScienceOn
15 J. C. Greenwood, J. Phys. E; 'Sci. Instrum., 21, 1114 (1988).   DOI   ScienceOn
16 K. E. Peteren, Proc. IEEE, 70, 420 (1982).   DOI   ScienceOn
17 U. Dellwo, P. Keller, and J. U. Meyer, Sensors and Actuators A, 61, 298 (1997).   DOI   ScienceOn
18 T. M. Berlicki, E. Murawski, M. Muszynski, S. J. Osadnik, and E. L. Prociow, Sensors and Actuators A, 64, 213 (1998).   DOI   ScienceOn