DOI QR코드

DOI QR Code

Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance

드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석

  • Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
  • 장경욱 (가천대학교 전기공학과)
  • Received : 2017.07.18
  • Accepted : 2017.07.24
  • Published : 2017.09.01

Abstract

MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

Keywords

References

  1. H. S. Kim and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 325 (2013). [DOI: http//dx.doi.org/10.4313/JKEM.2013.26.4.325]
  2. H. S. Kim, S. H. Lee, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 707 (2013). [DOI: http//dx.doi.org/10.4313/JKEM.2013.26.9.707]
  3. W. J. Lee, M. K. Choi, and K. U. Jang, Journal of the Semiconductor &Display Technology, 11, 55 (2012).
  4. H. S. Kim, Y. S. Park, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 257 (2014). [DOI: http//dx.doi.org/10.4313/JKEM.2014.27.4.257]
  5. http://www.comsol.com (2015).
  6. C. J. Hepp, F. T. Krogmann, and G. A. Urban, Sens. Actuators, A: Physical, 253, 136 (2017). [DOI: https://doi.org/10.1016/j.sna.2016.11.009]
  7. C. Y. Huang, B. H. Huang, F. R. Cheng, S. W. Chen, and T. M. Liou, Int. J. Heat Mass Transfer., 107, 657 (2017). [DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.063]
  8. T. De Cuyper, S. Broekaert, K. Chana, M. De Paepe, and S. Verhelst, Appl. Therm. Eng., 118, 561 (2017). [DOI: https://doi.org/10.1016/j.applthermaleng.2017.02.049]
  9. J. M. Toivanen, T. Tarvainen, J. M. J. Huttunen, T. Savolainen, and V. Kolehmainen, Int. J. Heat Mass Transf., 108, 860 (2017). [DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.060]
  10. A. Paliathanasis and M. Tsamparlis, J. Geometry Phys., 62, 2443 (2012). [DOI: https://doi.org/10.1016/j.geomphys.2012.09.004]
  11. X. Zhang, Z. Chen, and Y. Liu, The Material Point Method, 11 (2017). [DOI: https://doi.org/10.1016/B978-0-12-407716-4.00002-8]
  12. R. U. Haq, S. N. Kazmi, and T. Mekkaoui, Int. J. Heat Mass Transf., 112, 972 (2017). [DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.041]
  13. K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 403 (2015). [DOI: http//dx.doi.org/10.4313/JKEM.2016.28.6.403]