• Title/Summary/Keyword: Sensor arrays

Search Result 147, Processing Time 0.026 seconds

Recognition resolution enhancement of ultrasonic sensors via multiple steps of transmitter voltages

  • Na, Seung-You;Park, Min-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.409-412
    • /
    • 1996
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensing are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensor has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained with neither the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Fabrication and characteristics of MOSFET protein sensor using gold-black gate (Gold-Black 게이트를 이용한 MOSFET형 단백질 센서의 제조 및 특성)

  • Kim, Min-Suk;Park, Keun-Yong;Kim, Ki-Soo;Kim, Hong-Seok;Bae, Young-Seuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Research in the field of biosensor has enormously increased over the recent years. The metal-oxide semiconductor field effect transistor (MOSFET) type protein sensor offers a lot of potential advantages such as small size and weight, the possibility of automatic packaging at wafer level, on-chip integration of biosensor arrays, and the label-free molecular detection. We fabricated MOSFET protein sensor and proposed the gold-black electrode as the gate metal to improve the response. The experimental results showed that the output voltage of MOSFET protein sensor was varied by concentration of albumin proteins and the gold-black gate increased the response up to maximum 13 % because it has the larger surface area than that of planar-gold gate. It means that the expanded gate allows a larger number of ligands on same area, and makes the more albumin proteins adsorbed on gate receptor.

A Novel Approach to Improving the Performance of Randomly Perturbed Sensor Arrays (불규칙하게 흔들리는 센서어레이의 성능향상을 위한 새로운 방법)

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.65-72
    • /
    • 1995
  • The effects of random errors in array weight and sensor positions on the performance of a Linearly constrained linear sensor array is analyzed in a weight vector space. It is observed that a nonorthogonality exists between an optimum weight vector and the steering vector of an interference direction du e to random errors. A novel approach to improving the nulling performance by compensating for the nonorthogonality is proposed. Computer simulation results are presented.

  • PDF

A Weighted Least Square Method for Optimization of Thinned Sensor Arrays (희소어레이의 최적화를 위한 계수 최소 자승 방법)

  • 장병건
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.78-83
    • /
    • 1999
  • This paper concerns a least square method for pattern optimization of a thinned sensor array in which the squared error between a desired pattern and a synthesized one is minimized. A weighting function is applied in the function with respect to the array visual range for a symmetric and asymmetric configuration for sensor spacing. An exponential weighting function is proposed to control the sidelobes efficiently around the mainbeam and to generate a uniform sidelobe. The resulting pattern may be employed to eliminate incoming interferences distributed uniformly around the array visual range.

  • PDF

Assistive Circuit for Lowering Minimum Operating Voltage and Balancing Read/Write Margins in an SRAM Array

  • Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.184-188
    • /
    • 2014
  • There is a trade-off between read stability and writability under a full-/half-select condition in static random access memory (SRAM). Another trade-off in the minimum operating voltage between the read and write operation also exists. A new peripheral circuit for SRAM arrays, called a variation sensor, is demonstrated here to balance the read/write margins (i.e., to optimize the read/write trade-off) as well as to lower the minimum operation voltage for both read and write operations. A test chip is fabricated using an industrial 45-nm bulk complementary metal oxide semiconductor (CMOS) process to demonstrate the operation of the variation sensor. With the variation sensor, the word-line voltage is optimized to minimize the trade-off between read stability and writability ($V_{WL,OPT}=1.055V$) as well as to lower the minimum operating voltage for the read and write operations simultaneously ($V_{MIN,READ}=0.58V$, $V_{MIN,WRITE}=0.82V$ for supply voltage $(V_{DD})=1.1V$).

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Performance of direction-of-arrival estimation of SpSF in frequency domain: in case of non-uniform sensor array (주파수 영역으로 구현한 SpSF알고리듬: 비균일 센서 환경에서의 도래각 추정 성능)

  • Paik, Ji Woong;Zhang, Xueyang;Hong, Wooyoung;Hong, Jungpyo;Kim, Seongil;Lee, Joon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Currently, studies on the estimation algorithm based on compressive sensing are actively underway, but to the best of our knowledge, no study on the performance of the Sparse Spectrum Fitting (SpSF) algorithm in nonuniform sensor arrays has been made. This paper deals with the derivation of the compressive sensing based covariance fitting algorithm extended to the frequency domain. In addition, it shows the performance of directon-of-arrival estimation of the frequency domain SpSF algorithm in non-uniform linear sensor array system and the sensor array failure situation.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Polarity Index Dependence of M13 Bacteriophage-based Nanostructure for Structural Color-based Sensing

  • Lee, Yujin;Moon, Jong-Sik;Kim, Kyujung;Oh, Jin-Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2017
  • Color sensor systems based on M13 bacteriophage are being considerably researched. Although many studies on M13 bacteriophage-based chemical sensing of TNT, endocrine disrupting chemicals, and antibiotics have been undertaken, the fundamental physical and chemical properties of M13 bacteriophage-based nanostructures require further research. A simple M13 bacteriophage-based colorimetric sensor was fabricated by a simple pulling technique, and M13 bacteriophage was genetically engineered using a phage display technique to exhibit a negatively charged surface. Arrays of structurally and genetically modified M13 bacteriophage that can determine the polarity indexes of various alcohols were found. In this research, an M13 bacteriophage-based color sensor was used to detect various types of alcohols, including methanol, ethanol, and methanol/butanol mixtures, in order to investigate the polarity-related property of the sensor. Studies of the fundamental chemical sensing properties of M13 bacteriophage-based nanostructures should result in wider applications of M13 bacteriophage-based colorimetric sensors.