• Title/Summary/Keyword: Sensor Selection

Search Result 465, Processing Time 0.032 seconds

Energy-efficient routing protocol based on Localization Identification and RSSI value in sensor network (센서 네트워크에서 RSSI 값과 위치 추정 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.339-345
    • /
    • 2014
  • This study has a purpose that improves efficiency of energy management and adaptation followed by movement of node better than the various early studied routing techniques. The purpose of this paper is the technique that uses RSSI value and location of sensor that is received by each sensor node to routing. This sduty does not save node information of 1-hop distance. And it solves energy-inefficient traffic problem that happens during data exchange process for middle node selection in close range multi hop transmission technique. The routing protocol technique that is proposed in this study selects a node relevant to the range of transmission which is set for RSSI value that is received by each node and selects the closest node as a middle node followed by location data. Therefore, it is for not exhaustion of node's energy by managing energy efficiently and cutting data transmission consuming until the destination node.

Development of a General Purpose Simulator for Evaluation of Vehicle LIDAR Sensors and its Application (차량용 라이다 센서의 평가를 위한 범용 시뮬레이터 개발 및 적용)

  • Im, Ljunghyeok;Choi, Kyongah;Jeong, Jihee;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.267-279
    • /
    • 2015
  • In the development of autonomous vehicles, the importance of LIDAR sensors becomes larger. For sensor selection or algorithm development, it is difficult to test expensive LIDAR sensors mounted on a vehicle under various driving environment. In this study, we developed a simulator that is generally applicable for various vehicle LIDAR sensors based on the generalized geometric modeling of the common processes associated with vehicle LIDAR sensors. By configuring this simulator with the specific sensors being widely used, we performed the data simulation and quality analysis. Also, we applied the simulation data to obstacle detection and evaluated the applicability of the selected sensor. The developed simulator enables various experiments and algorithm development in parallel with hardware implementation prior to the deployment and operation of a sensor.

Energy Efficient In-network Density Query Processing in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 인-네트워크 밀도 질의 처리)

  • Lee, Ji-Hee;Seong, Dong-Ook;Kang, Gwang-Goo;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1234-1238
    • /
    • 2010
  • In recent, there have been done many studies on applications that monitor the information of mobile objects using Wireless Sensor Networks (WSN). A density query that finds out an area spread by density that a target object requires in the whole sensing field is a field of object monitoring applications. In this paper, we propose a novel homogeneous network-based in-network density query processing scheme that significantly reduces query processing costs and assures high accuracy. This scheme is based on the possibility-based expected region selection technique and the result compensation technique in order to enhance the accuracy of the density query and to minimize its energy consumption. To show the superiority of our proposed scheme, we compare it with the existing density query processing scheme. As a result, our proposed scheme reduces about 92% energy consumption for query processing, while its network lifetime increases compared to the existing scheme. In addition, the proposed scheme guarantees higher accuracy than the existing scheme in terms of the query result.

Pre-cluster HEAD Selection Scheme based on Node Distance in Chain-Based Protocol (체인기반 프로토콜에서 노드의 거리에 따른 예비 헤드노드 선출 방법)

  • Kim, Hyun-Duk;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1273-1287
    • /
    • 2009
  • PEGASIS, a chain-based protocol, forms chains from sensor nodes so that each node transmits and receives from a neighbor. In this way, only one node (known as a HEAD) is selected from that chain to transmit to the sink. Although PEGASIS is able to balance the workload among all of the nodes by selecting the HEAD node in turn, a considerable amount of energy may be wasted when nodes which are far away from sink node act as the HEAD. In this study, DERP (Distance-based Energy-efficient Routing Protocol) is proposed to address this problem. DERP is a chain-based protocol that improves the greedy-algorithm in PEGASIS by taking into account the distance from the HEAD to the sink node. The main idea of DERP is to adopt a pre-HEAD (P-HD) to distribute the energy load evenly among sensor nodes. In addition, to scale DERP to a large network, it can be extended to a multi-hop clustering protocol by selecting a "relay node" according to the distance between the P-HD and SINK. Analysis and simulation studies of DERP show that it consumes up to 80% less energy, and has less of a transmission delay compared to PEGASIS.

  • PDF

A Study on Business Promotion Procedure and Service Model for Ubiquitous Sensor Network Based Ground Facility Management (USN 기반의 지상시설물 관리를 위한 추진절차 및 서비스 모델 연구)

  • Jeong, Jin-Seok;Kim, Eui-Myoung;Lee, Yong-Joo;Byun, In-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.433-442
    • /
    • 2008
  • This research dealt with the methodological procedures of ubiquitous sensor networks, applying to urban ground facilities. Recently Korean government established a guide, "u-City IT Infra guide v1.0" when promoting u-City implement projects. This guide conceptually included general processes about u-City mainframe in overall, but its guidance could not lead the detailed procedures and methods for specific ground facility. Therefore, this research proposed the details of the procedure for the intelligence of facilities after reviewing the existing procedures for ubiquitous city. Newly proposed procedure for the intelligence of facilities was consisted of selection of facility and sensors for intelligence, setting a level for intelligence, and suggestion of service model for the selected facility.

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Survey on the Adoptability of IT and Smart Sensor Technologies into the Next-Generation High-Speed Train (차세대 고속전철에 적용할 IT 및 스마트센서 기술의 수용성에 관한 조사 연구)

  • Chang, Duk-Jin;Kang, Song-Hee;Song, Dahl-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.649-655
    • /
    • 2009
  • To join the leading four countries in high speed railway technology, the next generation high speed railway technology development project is undergoing. And, applying the IT for the safety and convenience of a passenger and an attendant is one of the research topics of the project. From the 24 derived candidate IT applications, the seven applications, such as information on an individual LCD monitor, an emergency or reminder notification, an Internet connection, remote communication with an attendant, air quality monitoring, extraordinary noise detection, and detection of an emergency in the lavatory, were selected to be implemented on the next generation train. In this paper, we presented the survey that was performed to make the selection process to be objective. Additional findings, such as what other services a passenger wishes to be provided, what activities passengers prefer to do based on duration of the trip, and things that make a passenger discomfort, were summarized.

Determination of Optimal Accelerometer Locations for Bridges using Frequency-Domain Hankel Matrix (주파수영역 Hankel matrix를 사용한 교량의 가속도센서 최적위치 결정)

  • Kang, Sungheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A new algorithm for determining optimal accelerometer locations is proposed by using a frequency-domain Hankel matrix which is much simpler to construct than a time-domain Hankel matrix. The algorithm was examined through simulation studies by comparing the outcomes with those from other available methods. To compare and analyze the results from different methods, a dynamic analysis was carried out under seismic excitation and acceleration data were obtained at the selected optimal sensor locations. Vibrational amplitudes at the selected sensor locations were determined and those of all the other degrees of freedom were determined by using a spline function. MAC index of each method was calculated and compared to look at which method could determine more effective locations of accelerometers. The proposed frequency-domain Hankel matrix could determine reasonable selection of accelerometer locations compared with the others.

Deep Learning Model Selection Platform for Object Detection (사물인식을 위한 딥러닝 모델 선정 플랫폼)

  • Lee, Hansol;Kim, Younggwan;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, object recognition technology using computer vision has attracted attention as a technology to replace sensor-based object recognition technology. It is often difficult to commercialize sensor-based object recognition technology because such approach requires an expensive sensor. On the other hand, object recognition technology using computer vision may replace sensors with inexpensive cameras. Moreover, Real-time recognition is viable due to the growth of CNN, which is actively introduced into other fields such as IoT and autonomous vehicles. Because object recognition model applications demand expert knowledge on deep learning to select and learn the model, such method, however, is challenging for non-experts to use it. Therefore, in this paper, we analyze the structure of deep - learning - based object recognition models, and propose a platform that can automatically select a deep - running object recognition model based on a user 's desired condition. We also present the reason we need to select statistics-based object recognition model through conducted experiments on different models.

Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors (집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.