• 제목/요약/키워드: Sensor Drift

검색결과 164건 처리시간 0.022초

내부 최적화를 이용한 화학 센서의 단기 드리프트 분석 및 보정 (Short Term Sensor's Drift Analysis and Compensation Using Internal Normalization)

  • 전진영;백종현;변형기
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.270-273
    • /
    • 2015
  • One of the main problems when working the chemical sensor is the lack of repeatability and reproducibility of the sensor response. If the problem is not properly taken into consideration, the stability and reliability of the system using chemical sensors would be decreased. In this paper we analyzed the sensor's drift of short term and proposed a compensation method for reducing the effects of the drift in order to improve the stability and the reliability of the chemical sensor. The sensor drift was analyzed by a trend line graph and CV(coefficient of variation) was used to quantify. And we compensated for the drift by using the internal normalization. As a result it was found that the value of CV was decreased after compensation.

Post-processing Technique for Improving the Odor-identification Performance based on E-Nose System

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.368-372
    • /
    • 2015
  • In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.

세 가지 드리프트 보정 기법을 이용한 단기 센서 드리프트 보정 (Short term Sensor's Drift Compensation by using Three Drift Correction Techniques)

  • 전진영;최장식;변형기
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.291-296
    • /
    • 2016
  • The ideal chemical sensor must show the similar result under the same condition for accurate measurement of gases regardless of time. However, the actual responses of chemical sensors have been shown the lacks of repeatability and reproducibility because of the drift which has been caused by aging and pollution of the sensor and the environment change such as temperature and humidity. If the problems are not properly taken into considerations, the stability and reliability of the system using chemical sensors would be decreased. In this paper, we analyzed the sensor's drift and applied the three different compensation methods(DWT( Discrete Wavelets Transform), Baseline Manipulation, Internal Normalization) for reducing the effects of the drift in order to improve the stability and the reliability of short term of the chemical sensors. And in order to compare the results of the methods, the standard deviation was used as a criterion. The sensor drift was analyzed by a trend line graph. We applied the three methods to the successive data measured for three days and compared the results. As a result of comparison, the standard deviation of DWT showed lowest value. (Before compensation: 7.1219, DWT: 1.3644, Baseline Manipulation: 2.5209, Internal Normalization: 3.1425).

Capacitive force sensor

  • Miyazawa, S.;Usui, Y.;Suzuki, M.;Baba, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.611-615
    • /
    • 1994
  • In this paper, the sensitivity, linearity and temperature drift characteristics of various capacitive force sensors are evaluated and compared using new experimental methods. In particular, two designs were employed to reduce temperature drift. Both types of sensor use high-sensitivity Al coated PET film, and their externals are miniaturized. The first has a layered design consisting of two dielectric substances with different temperature characteristics. The prototype of this design had a temperature drift of only 0.1% of the sensor's capacity in the 20-80.deg. C range. The second type uses both a dummy sensor ind an active sensor with the same characteristics. The temperature drift of the prototype was one-fifth the temperature drift of a single sensor.

  • PDF

USN응용과 범용목적에 적용가능한 센서 신호처리기 (Sensor signal processing device for USN application and general purpose)

  • 박찬원;김일환;전삼석
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.230-237
    • /
    • 2010
  • In sensor signal conditioning and processing, offset and drift characteristics of an operational amplifier are an important factor when the amplifier is used for a precise sensor signal amplifier. In order to use it in high accuracy, an expensive trimming or a complex compensation circuit is required. This paper presents the improved sensor signal conditioning and processing device for ubiquitous sensor network(USN) application or general purpose by developing a hardware of the circuit for reducing the offset voltage and drift characteristics, and a software for its control and sensor signal processing. We realize better offset voltage and drift characteristics of the signal conditioning circuit using low cost operational amplifiers. The experimental results show that this technique is effective in improving the performance of the sensor signal processing device.

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상 (On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures)

  • 신중엽;조정환;전기준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

갤로핑 측정을 위한 가속도 센서 드리프트 보상 알고리즘 (Drift Compensation Algorithm of Acceleration Sensor for Galloping Measurement System)

  • 변기식;안영주;김환성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.914-920
    • /
    • 2003
  • In this paper, we deal with two drift compensation algorithms of acceleration sensor for measuring the galloping on power transmission line. Firstly, the block diagram of galloping measurement system is given and a galloping model is presented. Secondly, two compensation algorithms, a simple compensation and a period compensation, are proposed. A simple compensation algorithm uses the drifts of velocity and distance at fixed periods, so it is useful for constant drift case. Next, a period compensation algorithm can compensate a periodic drift. This algorithm uses the previous measured data and compensated data for constant period, where the period is obtained by FFT method. Lastly, the effectiveness of proposed algorithms is verified by comparing between two algorithms in simulation, and its characteristics and the drift error bound are shown, respectively.

Planar Hall Resistance Sensor for Monitoring Current

  • Kim, KunWoo;Torati, Sri Ramulu;Reddy, Venu;Yoon, SeokSoo
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.151-154
    • /
    • 2014
  • Recent years have seen an increasing range of planar Hall resistive (PHR) sensor applications in the field of magnetic sensing. This study describes a new application of the PHR sensor to monitor a current. Initially, thermal drift experiments of the PHR sensor are performed, to determine the accuracy of the PHR signal output. The results of the thermal drift experiments show that there is no considerable drift in the signals attained from 0.1, 0.5, 1 and 2 mA current. Consequently, the PHR sensor provides adequate accuracy of the signal output, to perform the current monitoring experiments. The performances of the PHR sensor with bilayer and trilayer structures are then tested. The minimum detectable currents of the PHR sensor using bilayer and trilayer structures are $0.51{\mu}A$ and 54 nA, respectively. Therefore, the PHR sensor having trilayer structure is the better choice to detect ultra low current of few tens nanoampere.

변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발 (Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting))

  • 이후창;고재두;유광호;김완일
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.