DOI QR코드

DOI QR Code

Planar Hall Resistance Sensor for Monitoring Current

  • Kim, KunWoo (Department of Physics, Andong National University) ;
  • Torati, Sri Ramulu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Reddy, Venu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, SeokSoo (Department of Physics, Andong National University)
  • Received : 2014.03.28
  • Accepted : 2014.05.13
  • Published : 2014.06.30

Abstract

Recent years have seen an increasing range of planar Hall resistive (PHR) sensor applications in the field of magnetic sensing. This study describes a new application of the PHR sensor to monitor a current. Initially, thermal drift experiments of the PHR sensor are performed, to determine the accuracy of the PHR signal output. The results of the thermal drift experiments show that there is no considerable drift in the signals attained from 0.1, 0.5, 1 and 2 mA current. Consequently, the PHR sensor provides adequate accuracy of the signal output, to perform the current monitoring experiments. The performances of the PHR sensor with bilayer and trilayer structures are then tested. The minimum detectable currents of the PHR sensor using bilayer and trilayer structures are $0.51{\mu}A$ and 54 nA, respectively. Therefore, the PHR sensor having trilayer structure is the better choice to detect ultra low current of few tens nanoampere.

Keywords

References

  1. J. A. Ferreira, W. A. Cronje, and W. A. Relihan, IEEE Trans. Power Electron. 10, 32 (1995). https://doi.org/10.1109/63.368463
  2. M. Shafiq, G. A. Hussain, L. Kutt, and M. Lehtonen, Measurement 49, 126 (2014). https://doi.org/10.1016/j.measurement.2013.11.048
  3. Z. P. Wang, Q. B. Li, Y. Qi, Z. J. Huang, and J. H. Shi, Opt. Laser. Technol. 38, 87 (2006). https://doi.org/10.1016/j.optlastec.2004.10.007
  4. M. Banjevic, B. Furrer, M. Blagojevic, and R. S. Popovic, Sensor Actuat. A-Phys. 178, 64 (2012). https://doi.org/10.1016/j.sna.2012.02.019
  5. S. J. Petricevic, Z. Stojkovic, and J. B. Radunovic, IEEE Instrum. Meas. 55, 923 (2006). https://doi.org/10.1109/TIM.2006.873793
  6. S. Ziegler, R. C. Woodward, H. H. Iu, and Lawrence J. Borle, IEEE Sens. J. 9, 354 (2009). https://doi.org/10.1109/JSEN.2009.2013914
  7. S. H. Cheng and S. F. Lin, Sensor Actuat. A-Phys. 193, 112 (2013). https://doi.org/10.1016/j.sna.2013.01.022
  8. R. S. Popovic, Z. Randjelovic, and D. Manic, Sensor Actuat. A-Phys. 91, 46 (2001). https://doi.org/10.1016/S0924-4247(01)00478-2
  9. J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, Sensors 13, 13584 (2013). https://doi.org/10.3390/s131013584
  10. A. R., C. Reig, M. D. Cubells-Beltran, J. B. Roldan, D. Ramirez, S. Cardoso, and P. P. Freitas, Solid State Electron. 54, 1606 (2010). https://doi.org/10.1016/j.sse.2010.07.012
  11. P. Mlejnek, M. Vopalensky, and P. Ripka, Sensor Actuat. A-Phys. 141, 649 (2008). https://doi.org/10.1016/j.sna.2007.10.016
  12. S. Oh, M. Jadhav, J. Lim, V. Reddy, and C. G. Kim, Biosens. Bioelectron. 41, 758 (2013). https://doi.org/10.1016/j.bios.2012.09.069
  13. B. Sinha, T. S. Ramulu, K. W. Kim, R. Venu, J. J. Lee, and C. G. Kim, Biosens. Bioelectron. DOI No: 10.1016/j.bios.2014.03.021 (2014).
  14. B. Sinha, T. Q. Hung, T. S. Ramulu, S. Oh, and K. Kim, J. Appl. Phys. 113, 063903 (2013). https://doi.org/10.1063/1.4790139
  15. H. Kim, V. Reddy, K. W. Kim, I. Jeong, X. H. Hu, and C. G. Kim, J. Magn. 19, 1 (2014). https://doi.org/10.4283/JMAG.2014.19.1.001

Cited by

  1. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function vol.15, pp.9, 2015, https://doi.org/10.3390/s150922530
  2. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy vol.6, pp.5, 2016, https://doi.org/10.1063/1.4943147