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Abstract

In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system

which may be occurred drift signals from sensor array.  An adaptive radial basis function network using stochastic gradient (SG) and

singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor’s aging and poisoning

problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized

to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to

quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-

smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification

results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have pro-

duced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array

in electronic nose system.
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1. INTRODUCTION

There is demand for the development of instruments that

emulate the senses of humans mimicking the human sense of

smell, which is a sophisticated chemosensory system. The

electronic nose system is comprised an array of chemical sensors

together with associate electronics and pattern recognition

techniques [1]. Extremely selective information for discrimination

between adsorbed chemicals species can be obtained by analysis

of the cross-sensitivities between sensor elements [2]. The

electronic nose system sometime showed significant variation of

patterns over the long time period even if identical odors were

presented. Drift in the signal of the electronic nose system can

usually be classified into two categories that includes the short-

term drift caused by the memory effects and the long-term drift

caused by sensor poisoning and aging [3]. Since all types of drift

will after a certain time degrade the initial learned capability of

pattern recognition, it causes difficulty with classification of odors

after some period of time. A number of possible approaches have

been suggested to compensate systematic drift effects such as

those caused by aging and poisoning of the sensor materials

combined with various circumstances. Adaptive neural networks

are currently an active area of research and promise even more

sophisticated neural networks that can automatically compensate

drift effect [4]. Among them, an adaptive radial basis function

(RBF) networks, which had tuned centers and widths using the

singular value decomposition (SVD) method or the stochastic

gradient (SG) method, had shown good classification performance

for the complex and noisy chemical patterns given relatively ill-

conditioned clustering centers and widths. The characteristics of

adaptive RBF Network based on the SG method to adapt for fine

tuning of weights between hidden and output layer based on SVD

calculation gave more adaptation capabilities to the RBF network.

Also,  we could confirmed that an adaptive RBF network could be

used for drift compensation of a 32 conducting polymer sensor

array over a period of four weeks [5]. In this paper, an

identification technique for gas classification from prediction

signals of a drifting electronic nose system is presented. For good

odor prediction performance, an adaptive Gaussian Radial Basis

Function Network (RBFN) using SG and SVD is used to process

data from a chemical sensor array. But the method still requires
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better error performance for correct odor identification. The

identification technique, through the post-processing of

quantization, moving-averaging, another quantization and some

edge correction method, has shown correct gas identification

results for an electronic nose system with drift. It has been

confirmed throughout the experimental works.

2. EXPERIMENTAL

2.1 Radial Basis Function (RBF) Network

The architecture of RBF network has to be simple and consists

of input, hidden, and output layers. The basis functions in the

hidden layer produce a localized response to the input and

typically use hidden layer neurons with Gaussian response

functions, in which case the activation levels Oj of hidden unit j

are calculated by  

(1)

where x is the input vector, cj is the centers associated with hidden

unit j and σ is the width parameters, which represent a measure of

the spread of data. The outputs of the hidden units lie between 0

and 1; the closer the input to the center of the Gaussian, the larger

the response of the node.  The activation level Oj of an output unit

is determined by

(2)

where wji is the weight from hidden unit i to output unit j.

The performance of RBF network is highly dependent on the

choice of centers and widths in basis function.  For a minimum

number of nodes, the selected centers should well represent the

training data for acceptable classification.  Most of the training

algorithms for RBF network have been divided into the two

stages of processing.  Firstly, as a clustering method fuzzy c-

means algorithm which we found relatively good is applied to

the input patterns in order to determine the centers for hidden

layer nodes.  After the centers are fixed, the widths are

determined in a way that reflects the distribution of the centers

and input patterns.  Once the centers and widths are fixed, the

weights between hidden and output layer are trained by single

shot process using SVD.  This two-stage method provides some

useful solutions in pattern classification problem.  However,

since the centers and widths are fixed after they are chosen and

only the weights are adapted for supervised learning, this

method often results in not satisfying performance when input

patterns are not particularly clustered.

2.2 Radial Basis Function – Stochastic Gradient (RBF-

SG) Algorithm

In this section, an adaptation method to select optimum centers

and widths for RBF network is presented. Also, the weights

between hidden and output layer can be also tuned during the

adaptation routine for widths and centers.  For given set of input

patterns measured using a thirty-two element sensor array, the

fuzzy c-means algorithm with random initial conditions is carried

out to find locations of clusters’ centers which are then fed into the

hidden layer units of RBF network.  The Euclidean distance

between the input patterns and the clusters’ center is evaluated,

then a Gaussian basis function with initial widths is applied.  The

weights between hidden and output units are trained by a single

shot process using the Singular Value Decomposition (SVD)

method, because RBF network is applied as a supervised learning

algorithm for odors classification. For the tuning of centers and

widths, weights were initially selected by a fuzzy c-means

algorithm. Patterns distributions and weights are also initialized by

SVD in the very first learning stage, the SG method being adapted

to finely tune centers and widths as described in as follows: [4].

(3)

(4)

Where μs and μc are adaptation coefficients for widths σj , and

centers cj, respectively, and they control the speed of adaptation.

The weights between the hidden and output layer are also tuned

by SVD calculation in the same iteration together with centers and

widths

2.3 Post-Processing Technique

Because of drift from sensor aging and poisoning problems, the

prediction outputs from RBF (without SG) or RBF-SG algorithm
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still show bias and fluctuations. Judging odors from the prediction

signal from those algorithms gives rise to still not acceptable

number of identification errors. An improved identification

method for odor decision can be made by post-processing the

prediction signals of a drifting odor sensing system. As depicted

in Fig. 1, the prediction signal having bias and fluctuations are

quantized first to determine what decision level each prediction

output sample is on.

The output of the first quantization stage shows on which level

the samples are but many decision errors occur due to fluctuations

from noise and bias from sensor drift. In our experiments with

data measured over period of 4 weeks, the drift does not exceed

one-step distance and RBF-SG algorithm has shown fluctuations

within one or two-step distance. Still we can't tell which level

samples with sharp edges are on. Now we need to smooth those

sharp fluctuations. To mitigate sharp fluctuations sliding window

Moving-Averaging method is applied to the quantized outputs.

Then sharp fluctuations are smoothed below half step. Level

decision to this output is needed again, using quantization process

II. From this quantization process II, some errors are detected

within 1 or 2 samples around edges. We can find solutions for

edge correction using the prediction data again. Using edges of

quantization II output as the central points, we search rising edges

of the prediction data within + - 2 samples around the central

point. If any rising edge is detected in the prediction data around

the central point of quantization II output, the detected edge

becomes the right one. If not, the central points are the correct

edges.

3. RESULTS AND DISCUSSIONS

For testing the performance of the classifier based on adaptive

RBF network on drifting data, we used an electronic nose system

that has an array of conducting polymer sensors mounted on

ceramic substrate with associate electronic developed by Prof.

Krishna Persaud at University of Manchester, U.K. [6]. A

conducting polymer sensor array consisting of 32 sensors was

used to collect patterns from solvent vapors measured over period

of 4 weeks.  For network training, eight centers for each class

were chosen from a total of 520 patterns in weeks 1 and 2 data

sets.  The trained system was then tested against 412 patterns of

solvents from weeks 3 and 4 data sets. After having trained the

RBF network using weeks 1 and 2 data sets obtained from 1%

acetonitrile (ac1), 10% acetonitrile (ac10), 1% acetone (ae), 1%

butanone (bu), 10% methanol (me), 1% propanol (pr1), 10%

propanol(pr10), and water (wa) , the adaptive RBF network with

SG tuning method for centers and widths was applied to the

previously unseen data from weeks 3 and 4 to evaluate odor

prediction under drift effects. Fig. 2(a) shows the predicted output

of the network. The weights of RBF-SG algorithm are also

updated using the SVD method in the training session. Though

this result indicates that the adaptive RBF network using SG

works well in the prediction of the previously unseen patterns over

Fig. 1. Post-processing Technique.

Fig. 2(a). Prediction results of RBF-SG for 3-4 weeks data.

Fig. 2(b). Target data.
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a period of 4 weeks, it has still noticeable decision errors. The

error performance was compared when we use the proposed

identification post processing method vs. when not use it. 

The prediction output of RBF-SG and the identification results

from the proposed post processing method are shown in Fig. 2 (c)

and (d) respectively. We acquired the error performance

improvement from 8% to 0%.

Perfect identification performance was resulted in. In Fig. 3

(a), the prediction output of RBF without using SG and the

results from the proposed post processing method are presented.

It has shown 18% vs. 11% of error for RBF without using SG,

which are illustrated in Figs. 3 (b) and (c). This implies that

using this simple post processing method even to not finely

tuned RBF classifiers, considerable error performance

improvement can be acquired. 

Fig. 2(c). Decision results without proposed method (8% error).

Fig. 2(d). Decision results with proposed method (0% error).

Fig. 3(a). Prediction results of RBF (not using SG).

Fig. 3(b). Decision results without proposed technique (18% error).

Fig. 3(c). The identification results using the proposed technique

(11% error).
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4. CONCLUSIONS

This paper presents a post processing techniques to improve

identification error performance in the adaptive RBF network

under conditions of data sets that show some drift.  With the use

of the SG method for tuning of centers and widths including

weights calculation by SVD, we confirmed that the adaptive RBF

network has good odor prediction performance after some period

of time, even if the sensors suffered from drift. But the decision

performances from RBF or RBF-SG algorithm still need more

improvement. The proposed techniques for identification

performance improvement that consists in quantization,

smoothing, quantization again and edge correction processes

shows that even to not finely tuned RBF classifiers, considerable

error performance improvement can be acquired. In RBF-SG

case, we acquired Perfect identification performance. 

 The enhancements have produced a very robust odor classifier

which can compensate for decision errors induced from drift

effect with sensor array in electronic nose system.
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