• Title/Summary/Keyword: Sensitive

Search Result 13,760, Processing Time 0.039 seconds

The Effect of ATP-sensitive Potassium Channel on R-PIA Induced Mechanical Antiallodynia in a Peripheral Neuropathic Rat (신경병증 통증 모델의 백서에서 R-PIA의 기계적 항이질통 효과와 ATP-감수성 칼륨 통로와의 연관성에 대한 연구)

  • Min, Hong Gi;Seong, Seung Hye;Jung, Sung Mun;Shin, Jin Woo;Gwak, Mi Jung;Leem, Jeong Gill;Lee, Cheong
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Background: Nerve ligation injury may produce mechanical allodynia, but this can be reversed after an intrathecal administration of adenosine analogues. In many animal and human studies, ATP-sensitive potassium channel blockers have been known to reverse the antinociceptive effect of various drugs. This study was performed to evaluate the mechanical antiallodynic effects of spinal R-PIA (Adenosine A1 receptor agonist) and the reversal of these effects due to pretreatment with glibenclamide (ATP-sensitive potassium channel blocker). Thus, the relationship between the antiallodynic effects of R-PIA and ATP-sensitive potassium channel were investigated in a neuropathic model. Methods: Male Sprague Dawley rats were prepared by tightly ligating the left lumbar 5th and 6th spinal nerves and implantation of a chronic lumbar intrathecal catheter for drug administration. The mechanical allodynia was measured by applying von Frey filaments ipsilateral to the lesioned hind paw. And the thresholds for paw withdrawal assessed. In study 1, either R-PIA (0.5, 1 and $2{\mu}g$) or saline were administered intrathecally for the examination of the antiallodynic effect of R-PIA. In study 2, glibenclamide (2, 5, 10 and 20 nM) was administered intrathecally 5 min prior to an R-PIA injection for investigation of the reversal of the antiallodynic effects of R-PIA. Results: The antiallodynic effect of R-PIA was produced in a dose dependent manner. In study 1, the paw withdrawal threshold was significantly increased with $2{\mu}g$ R-PIA (P < 0.05). In study 2, the paw withdrawal threshold with $2{\mu}g$ R-PIA was significantly decreased almost dose dependently by intrathecal pretreatment of 5, 10 and 20 nM glibenclamide (P < 0.05). Conclusions: These results demonstrated that an intrathecal injection of ATP-sensitive potassium channel blockers prior to an intrathecal injection of adenosine A1 receptors agonist had an antagonistic effect on R-PIA induced antiallodynia. The results suggest that the mechanism of mechanical antiallodynia, as induced by an intrathecal injection of R-PIA, may involve the ATP-sensitive potassium channel at both the spinal and supraspinal level in a rat nerve ligation injury model.

Effect of pH on PAH Transport in Brush Border Basolateral Membrane Vesicles of Rabbit Proximal Tubule (가토 신장 근위세뇨관의 Brush Border 및 Basolateral Membrane Vesicle에서 PAH 이동에 미치는 pH의 영향)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 1988
  • The effect of pH on the rate of PAH uptake was studied in rabbit renal basolateral membrane vesicles (BLMV) and brush border membrane vesicles (BBMV). In the absence of Na in incubation medium, a decrease in external $pH(pH_0)$ led to an increase in probenecid-sensitive PAH uptake by BLMV. In the presence of Na, the probenecid-sensitive PAH uptake was unaltered when the $pH_0$ decreased from 8.0 to 6.0 but further decrease in $pH_0$ to 5.5 increased significantly the uptake. The probenecid-sensitive PAH uptake was not affected by an alteration in pH per se in the absence of a pH gradient with or without the presence of Na. However, the presence of Na stimulated the probenecid-sensitive PAH uptake in all pH ranges tested over that measured in the absence of Na. A similar pattern of pH dependence on the PAH uptake was observed in BBMV but the presence of Na did not alter the probenecid-sensitive PAH uptake in the presence and absence of a pH gradient. Kinetic analysis for BLMV showed that Na or pH gradient increased Vmax of the probenecid-sensitive PAH uptake without a change in Km value. These results suggest that PAH is transported by $OH^-/PAH$ exchange process in the luminal membrane, but the pH dependence in the BLMV is not unequivocally consistent with an anion exchange process. The PAH transport is dependent on Na in BLMV but not in BBMV.

  • PDF

The Nutritional Status by Stress on Freshmen of University (대학 신입생의 스트레스 민감 여부에 따른 영양상태)

  • Lee, Young-Hee;Rhie, Seung-Gyo;Won, Hyang-Rye
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.4
    • /
    • pp.81-95
    • /
    • 2006
  • This study was made to find out how stress affect on nutrition status of the college freshmen who were experiencing physical growth and development as well as drastic emotional change. 400 male and female freshmen in 4 year colleges were surveyed respectively through the health check-up procedure for college entrance in February, In order to find out the stress in each group frustration, deprivation, lack of self efficacy, type A behavior and anxiety response were surveyed through 10 questions with total 40 points by assigning 4 points for each question. Diet Status was expressed by DDS (Dietary Diversity Score by 5 food groups) and DVS(Dietary Variety Score). 24-hrs recall method was used to find out the quantity of daily nutrient of EAR(estimated adquacy ratio) by KDRIs(Korean Dietary Recommended Intakes). Nutrition level was analyzed by Can-Pro for professionals (Korea Nutrition Association). And for the quality intake, percentage was calculated and MAR(Mean Adequacy Ratio) were produced. Highest point was obtained in the stress of anxiety with the total 40 score of 30.20, and the scores were 29.79, 28.67, and 28.39 for deprivation, type A behavior and frustration respectively. There was no difference of blood components in accordance with stress type. Stress type was divided into less sensitive group and highly sensitive one and the relationship with the blood nutrient status was observed. The difference of blood component and blood pressure in sensitive and highly sensitive groups was observed in deprivation and anxiety. The index of blood pressure(p<0.05), hemoglobin(p<0.01), HDL-cholesterol(p<0.05), and Fe(p<0.05) was high in the deprivation of sensitive group. Blood pressure and hemoglobin was high in type A of sensitive group(p<0.05). And the contents of blood triglyceride was high in the anxiety of sensitive group(p<0.001) The result of nutrition intake analysis according to stress type showed that there was low intake for energy, riboflavin, and niacin. When the degree of deprivation was high there was a lack of riboflavin intake and there was no significant difference of nutrition intake in lack of self efficacy, type A behavior and anxiety response. Thus, it is necessary for colleges to educate the students to maintain mental stability through various programs and activities after catching a kind and extent of the stress college students we meeting with like the confusion of value system, open heterosexual relationship, and the employment difficulties linked with political uncertainty and economic recession.

  • PDF

Difference in Growth, SOD Activity and MDA Content Between Ozone Tolerant and Sensitive Families of Open-Pollinated Pinus densiflora (소나무 풍매차대묘의 오존 내성 및 민감성 가계간 생장, SOD 활성 및 MDA 함량 차이)

  • Lee, Jae-Cheon;Oh, Chang-Young;Han, Sim-Hee;Kim, Jang-Su
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • This study was conducted to understand response of damage and tolerance to ozone between ozone tolerant and sensitive families of P. densiflora which had been selected by the based on visual injury and growth. Five individuals were selected in each group, and were exposed to 100ppb ozone for 90 days. Every 30 days after ozone fumigation, diamter at root collar (ORC), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were measured. In early state of ozone fumigation tolerant families showed three times higher relative DRC growth rate than sensitive families. And during whole fumigation period growth rate of tolerant families was superior to growth rate of sensitive families. SOD activity in sensitive families was increased 30 days after fumigation, and in accordance with fumigation period extended it was decreased continuously. MDA content in ozone treatment showed higher than in control, and MDA content of tolerant families was higher than that sensitive families. In our results tolerant families has higher antioxidative activity than sensitive families. Therefore tolerant families can restrain lipid peroxidation and damage on physiological activity.

1/f scaling exponent of EEG depending on different sensitivities of behavioral activation and inhibition systems for young and elderly groups (청년층과 노인층의 행동활성화체계 및 행동억제체계 민감도에 따른 뇌파의 1/f 스케일링 분석)

  • Jin Seung-Hyun;Kim Wuon-Shik;Noh Gi-Young
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.415-422
    • /
    • 2005
  • The purpose of the present study was to investigate the differences of nonlinear characteristics of electroencephalogram (EEG) depending on different sensitivities of behavioral activation system (BAS) and behavioral inhibition system (BIS) of young and elderly groups. The EEGs from Fpl and Fp2 electrodes were recorded during resting condition. The young and elderly groups consisted of 19 and 31 healthy right-handed volunteers, respectively. We estimated 1/f scaling exponent which reflects the nonlinear dynamical complexity of EEG. As results, we found the differences of 1/f scaling exponent between young ant elderly BAS sensitive groups. The 1/f scaling exponent of young BAS sensitive group showed significantly higher values than those of elderly BAS sensitive group at the left prefrontal area (Fpl). The young BAS sensitive group had also a tendency to higher 1/f scaling exponent at the right prefrontal area (Fp2). Decrease of the 1/f scaling exponent indicates the increase of complexity and the decrease of the amount of information related to the statistical distribution. Therefore, the elderly BAS sensitive group has higher complexity than young BAS sensitive group, though they were all classified as BAS sensitive group by BAS/BIS scale. Our results suggest the possibility of correlation between BAS sensitivity an4 age.

  • PDF

An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce (MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선)

  • Lee, Inhoe;Oh, Hyesung;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.681-688
    • /
    • 2015
  • The k nearest neighbor (k-NN) graph construction is an important operation with many web-related applications, including collaborative filtering, similarity search, and many others in data mining and machine learning. Despite its many elegant properties, the brute force k-NN graph construction method has a computational complexity of $O(n^2)$, which is prohibitive for large scale data sets. Thus, (Key, Value)-based distributed framework, MapReduce, is gaining increasingly widespread use in Locality Sensitive Hashing which is efficient for high-dimension and sparse data. Based on the two-stage strategy, we engage the locality sensitive hashing technique to divide users into small subsets, and then calculate similarity between pairs in the small subsets using a brute force method on MapReduce. Specifically, generating a candidate group stage is important since brute-force calculation is performed in the following step. However, existing methods do not prevent large candidate groups. In this paper, we proposed an efficient algorithm for approximate k-NN graph construction by regrouping candidate groups. Experimental results show that our approach is more effective than existing methods in terms of graph accuracy and scan rate.

Toxicity Monitoring of Endocrine Disrupting Chemicals (EDCs) Using Freeze-dried Recombinant Bioluminescent Bacteria

  • Kim, Sung-Woo;Park, Sue-Hyung;Jiho Min;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.395-399
    • /
    • 2000
  • Five different freeze-dried recombinant bioluminescent bacteria were used for the detection of cellular stresses caused by endocrine disrupting chemicals. These strains were DPD2794 (recA::luxCDABE), which is sensitive to DNA damage, DPD2540 (fabA::luxCDABE), sensitive to cellular membrane damage, DPD2511 (katG::luxCDABE), sensitive to oxidative damage, and TV1061 (grpE::luxCDABE), sensitive to protein damage. GC2, which emits bioluminescence constitutively, was also used in this study. The toxicity of several chemicals was measured using GC2. Damage caused by known endocrine disrupting chemicals, such as nonyl phenol, bisphenol A, and styrene, was detected and classified according to toxicity mode, while others, such as phathalate and DDT, were not detected with the bacteria. These results suggest that endocrine disrupting chemicals are toxic in bacteria, and do not act via an estrogenic effect, and that toxicity monitoring and classification of some endocrine disrupting chemicals may be possible in the field using these freeze-dried recombinant bioluminescent bacteria.

  • PDF

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.

Surface Temperature Measurement in Microscale with Temperature Sensitive Fluorescence (온도 민감 형광을 이용한 마이크로 스케일 표면온도 측정)

  • Jung Woonseop;Kim Sungwook;Kim Ho-Young;Yoo Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.153-160
    • /
    • 2006
  • A technique for measuring surface temperature field in micro scale is newly proposed, which uses temperature-sensitive fluorescent (TSF) dye coated on the surface and is easily implemented with a fluorescence microscope and a CCD camera. The TSF dye is chosen among mixtures of various chemical compositions including rhodamine B as the fluorescent dye to be most sensitive to temperature change. In order to examine the effectiveness of this temperature measurement technique, numerical analysis and experiment on transient conduction heat transfer for two different substrate materials, i. e., silicon and glass, are performed. In the experiment, to accurately measure the temperature with high resolution temperature calibration curves were obtained with very fine spatial units. The experimental results agree qualitatively well with the numerical data in the silicon and glass substrate cases so that the present temperature measurement method proves to be quite reliable. In addition, it is noteworthy that the glass substrate is more appropriate to be used as thermally-insulating locally-heating heater in micro thermal devices. This fact is identified in the temperature measuring experiment on the locally-heating heaters made on the wafer of silicon and glass substrates. Accordingly, this technique is capable of accurate and non-intrusive high-resolution measurement of temperature field in microscale.