• Title/Summary/Keyword: Semiprime ring

Search Result 82, Processing Time 0.027 seconds

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

On Semiprime Rings with Generalized Derivations

  • Khan, Mohd Rais;Hasnain, Mohammad Mueenul
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.565-571
    • /
    • 2013
  • In this paper, we investigate the commutativity of a semiprime ring R admitting a generalized derivation F with associated derivation D satisfying any one of the properties: (i) $F(x){\circ}D(y)=[x,y]$, (ii) $D(x){\circ}F(y)=F[x,y]$, (iii) $D(x){\circ}F(y)=xy$, (iv) $F(x{\circ}y)=[F(x) y]+[D(y),x]$, and (v) $F[x,y]=F(x){\circ}y-D(y){\circ}x$ for all x, y in some appropriate subsets of R.

SOME CONDITIONS ON DERIVATIONS IN PRIME NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • Posner [Proc. Amer. Math. Soc. 8 (1957), 1093-1100] defined a derivation on prime rings and Herstein [Canad, Math. Bull. 21 (1978), 369-370] derived commutative property of prime ring with derivations. Recently, Bergen [Canad. Math. Bull. 26 (1983), 267-227], Bell and Daif [Acta. Math. Hunger. 66 (1995), 337-343] studied derivations in primes and semiprime rings. Also, in near-ring theory, Bell and Mason [Near-Rungs and Near-Fields (pp. 31-35), Proceedings of the conference held at the University of Tubingen, 1985. Noth-Holland, Amsterdam, 1987; Math. J. Okayama Univ. 34 (1992), 135-144] and Cho [Pusan Kyongnam Math. J. 12 (1996), no. 1, 63-69] researched derivations in prime and semiprime near-rings. In this paper, Posner, Bell and Mason's results are extended in prime near-rings with some conditions.

  • PDF

DERIVATIONS OF PRIME AND SEMIPRIME RINGS

  • Argac, Nurcan;Inceboz, Hulya G.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.997-1005
    • /
    • 2009
  • Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+$yd(x))^n$ = xy + yx for all x, y $\in$ I, then R is commutative. (ii) If char R $\neq$ = 2 and (d(x)y + xd(y) + d(y)x + $yd(x))^n$ - (xy + yx) is central for all x, y $\in$ I, then R is commutative. We also examine the case where R is a semiprime ring.

SOME RESULTS ON CENTRALIZERS OF SEMIPRIME RINGS

  • ANSARI, ABU ZAID
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.99-105
    • /
    • 2022
  • The objective of this research paper is to prove that an additive mapping T from a semiprime ring R to itself will be centralizer having a suitable torsion restriction on R if it satisfy any one of the following algebraic equations (a) 2T(xnynxn) = T(xn)ynxn + xnynT(xn) (b) 3T(xnynxn) = T(xn)ynxn+xnT(yn)xn+xnynT(xn) for every x, y ∈ R. Further, few extensions of these results are also presented in the framework of *-ring.

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

THE SOURCE OF SEMIPRIMENESS OF RINGS

  • Aydin, Neset;Demir, Cagri;Camci, Didem Karalarlioglu
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1083-1096
    • /
    • 2018
  • Let R be an associative ring. We define a subset $S_R$ of R as $S_R=\{a{\in}R{\mid}aRa=(0)\}$ and call it the source of semiprimeness of R. We first examine some basic properties of the subset $S_R$ in any ring R, and then define the notions such as R being a ${\mid}S_R{\mid}$-reduced ring, a ${\mid}S_R{\mid}$-domain and a ${\mid}S_R{\mid}$-division ring which are slight generalizations of their classical versions. Beside others, we for instance prove that a finite ${\mid}S_R{\mid}$-domain is necessarily unitary, and is in fact a ${\mid}S_R{\mid}$-division ring. However, we provide an example showing that a finite ${\mid}S_R{\mid}$-division ring does not need to be commutative. All possible values for characteristics of unitary ${\mid}S_R{\mid}$-reduced rings and ${\mid}S_R{\mid}$-domains are also determined.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

ON SEMI-IFP RINGS

  • Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • We in this note introduce the concept of semi-IFP rings which is a generalization of IFP rings. We study the basic structure of semi-IFP rings, and construct suitable examples to the situations raised naturally in the process. We also show that the semi-IFP does not go up to polynomial rings.

A PROPERTY OF P-INJETIVE RING

  • Hong, Chan-Yong
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1992
  • In this paper, some properties of p-injective ring is studied: The Jacobson radical of a pinjective ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Also, the left singular ideal of a ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Finally, we give an example which shows that a semiprime left p-injective ring such that every essential left ideal is two-sided is not necessarily to be strongly regular.egular.

  • PDF