• Title/Summary/Keyword: Semiconductor wafer

Search Result 700, Processing Time 0.039 seconds

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

A New Dicing Method for Semiconductor Wafer (반도체 웨이퍼를 위한 새로운 다이싱 방법)

  • Cha, Young-Youp;Choi, Bum-Sick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1309-1316
    • /
    • 2003
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But products with inferior quality are produced under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not apply this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer such as SiO2, GaAs, GaAsP, and AlGaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes a new wafer dicing method using fixed diamond scriber and precision servo mechanism and determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using scriber.

Development of The 3-channel Vision Aligner for Wafer Bonding Process (웨이퍼 본딩 공정을 위한 3채널 비전 얼라이너 개발)

  • Kim, JongWon;Ko, JinSeok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • This paper presents a development of vision aligner with three channels for the wafer and plate bonding machine in manufacturing of LED. The developed vision aligner consists of three cameras and performs wafer alignment of rotation and translation, flipped wafer detection, and UV Tape detection on the target wafer and plate. Normally the process step of wafer bonding is not defined by standards in semiconductor's manufacturing which steps are used depends on the wafer types so, a lot of processing steps has many unexpected problems by the workers and environment of manufacturing such as the above mentioned. For the mass production, the machine operation related to production time and worker's safety so the operation process should be operated at one time with considering of unexpected problem. The developed system solved the 4 kinds of unexpected problems and it will apply on the massproduction environment.

  • PDF

The Study of SF Decrease Effect on the Wafer by the Poly Back-Seal (Poly Back-Seal에 의한 웨이퍼 SF(Stacking Fault)감소 효과 연구)

  • Hong, N.P.;Lee, T.S.;Choi, B.H.;Kim, T.H.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1510-1512
    • /
    • 2000
  • Due to the shrinking of the chip size and increasing of the complexity in the modern electronic devices. the defect of wafer are so important to decide the yield in the device process. The engineers has studied the wafer defects and the characteristics. They published lots of the experimental methods. I did an experiment the gettering effect of the defects due to the high temperature and the long time diffusion. Actually, As the thickness of the wafer backside polysilicon is thicker and the diffusion time is faster. the defects on the wafer are decreased. The polysilicon gram boundaries of the wafer backside played an important part as the defect gettering site.

  • PDF

Performance Analysis of Scheduling Rules in Semiconductor Wafer Fabrication (반도체 웨이퍼 제조공정에서의 스케줄링 규칙들의 성능 분석)

  • 정봉주
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.49-66
    • /
    • 1999
  • Semiconductor wafer fabrication is known to be one of the most complex manufacturing processes due to process intricacy, random yields, product diversity, and rapid changing technologies. In this study we are concerned with the impact of lot release and dispatching policies on the performance of semiconductor wafer fabrication facilities. We consider several semiconductor wafer fabrication environments according to the machine failure types such as no failure, normal MTBF, bottleneck with low MTBF, high randomness, and high MTBF cases. Lot release rules to be considered are Deterministic, Poisson process, WR(Workload Regulation), SA(Starvation Avoidance), and Multi-SA. These rules are combined with several dispatching rules such as FIFO (First In First Out), SRPT (Shortest Remaining Processing Time), and NING/M(smallest Number In Next Queue per Machine). We applied the combined policies to each of semiconductor wafer fabrication environments. These policies are assessed in terms of throughput and flow time. Basically Weins fabrication setup was used to make the simulation models. The simulation parameters were obtained through the preliminary simulation experiments. The key results throughout the simulation experiments is that Multi-SA and SA are the most robust rules, which give mostly good performance for any wafer fabrication environments when used with any dispatching rules. The more important result is that for each of wafer fabrication environments there exist the best and worst choices of lot release and dispatching policies. For example, the Poisson release rule results in the least throughput and largest flow time without regard to failure types and dispatching rules.

  • PDF

Wafer Map Image Analysis Methods in Semiconductor Manufacturing System (반도체 공정에서의 Wafer Map Image 분석 방법론)

  • Yoo, Youngji;An, Daewoong;Park, Seung Hwan;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In the semiconductor manufacturing post-FAB process, predicting a package test result accurately in the wafer testing phase is a key element to ensure the competitiveness of companies. The prediction of package test can reduce unnecessary inspection time and expense. However, an analysing method is not sufficient to analyze data collected at wafer testing phase. Therefore, many companies have been using a summary information such as a mean, weighted sum and variance, and the summarized data reduces a prediction accuracy. In the paper, we propose an analysis method for Wafer Map Image collected at wafer testing process and conduct an experiment using real data.

The Parameter Determination of Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.164-167
    • /
    • 2002
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not applicable this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer such as SiO$_2$, GaAs, CaAsP, and AlCaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using scriber.

  • PDF

Etching Method of Thin Film on the Backside of Wafer Using Single Wafer Processing Tool (매엽식 방법을 이용한 웨이퍼 후면의 박막 식각)

  • Ahn, Young-Ki;Kim, Hyun-Jong;Koo, Kyo-Woog;Cho, Jung-Keun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.47-49
    • /
    • 2006
  • Various methods of making thin film is being used in semiconductor manufacturing process. The most common method in this field includes CVD(Chemical Vapor Deposition) and PVD(Physical Vapor Deposition). Thin film is deposited on both the backside and the frontside of wafers. The thin film deposited on the backside has poor thickness profile, and can contaminate wafers in the following processes. If wafers with the thin film remaining on the backside are immersed in batch type process tank, the thin film fall apart from the backside and contaminate the nearest wafer. Thus, it is necessary to etch the backside of the wafer selectively without etching the frontside, and chemical injection nozzle positioned under the wafer can perform the backside etching. In this study, the backside chemical injection nozzle with optimized chemical injection profile is built for single wafer tool. The evaluation of this nozzle, performed on $Si_3N_4$ layer deposited on the backside of the wafer, shows the etching rate uniformity of less than 5% at the etching rate of more than $1000{\AA}$.

  • PDF

Micro-scale Thermal Sensor Manufacturing and Verification for Measurement of Temperature on Wafer Surface

  • Kim, JunYoung;Jang, KyungMin;Joo, KangWo;Kim, KwangSun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.39-44
    • /
    • 2013
  • In the semiconductor heat-treatment process, the temperature uniformity determines the film quality of a wafer. This film quality effects on the overall yield rate. The heat transfer of the wafer surface in the heat-treatment process equipment is occurred by convection and radiation complexly. Because of this, there is the nonlinearity between the wafer temperature and reactor. Therefore, the accurate prediction of temperature on the wafer surface is difficult without the direct measurement. The thermal camera and the T/C wafer are general ways to confirm the temperature uniformity on the heat-treatment process. As above ways have limit to measure the temperature in the precise domain under the micro-scale. In this study, we developed the thin film type temperature sensor using the MEMS technology to establish the system which can measure the temperature under the micro-scale. We combined the experiment and numerical analysis to verify and calibrate the system. Finally, we measured the temperature on the wafer surface on the semiconductor process using the developed system, and confirmed the temperature variation by comparison with the commercial T/C wafer.