• Title/Summary/Keyword: Semiconductor sensor

Search Result 738, Processing Time 0.031 seconds

Fabrication and Characterization of Carbon Nanotube-modified Carbon Paper-based Lactate Oxidase-catalase Electrode (탄소나노튜브로 개질된 탄소종이 기반 젖산산화효소 - 카탈레이즈 전극 제작 및 특성 분석)

  • Ke Shi;Varshini Selvarajan;Yeong-Yil Yang;Hyug-Han Kim;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.576-583
    • /
    • 2023
  • This study aimed to investigate the impact of enhancing the electrode conductivity and mitigating the production of hydrogen peroxide - a by-product arising from lactate oxidation - on the performance of lactate electrodes. The electrical conductivity of the electrode was improved by modifying the surface of carbon paper with single-walled carbon nanotubes. Catalase was introduced to effectively eliminate the hydrogen peroxide produced during the lactate oxidation reaction. The carbon paper electrode, with simultaneous immobilization of both lactate oxidase and catalase, yielded a current 1.7 times greater than the electrode where only lactate oxidase was immobilized. The electrode in which lactate oxidase and catalase were co-immobilized on the surface of carbon paper modified with single-walled carbon nanotubes, produced a current of 171 µA, which was more than twice as much current as the carbon paper with only lactate oxidase immobilized. The optimized electrode showed a linear response up to lactate concentration of 20 mM, confirming that it can be used as a sensor electrode.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

Preprocessing Algorithm for Enhancement of Fingerprint Identification (지문이미지 인증률 향상을 위한 전처리 알고리즘)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • This paper proposes new preprocessing algorithm to extract minutiae in the process of fingerprint recognition. Fingerprint images quality enhancement is a topic phase to ensure good performance in a topic phase to ensure good performance in a Automatic Fingerprint Identification System(AFIS) based on minutiae matching. This paper proposes an algorithm to improve fingerprint image preprocessing to extract minutiae accurately based on directional filter. We improved the suitability of low quality fingerprint images to better suit fingerprint recognition by using valid ridge vector and ridge probability of fingerprint images. With the proposed fingerprint improvement algorithm, noise is removed and presumed ridges are more clearly ascertained. The algorithm is based on five step: computation of effective ridge vector, computation of ridge probability, noise reduction, ridge emphasis, and orientation compensation and frequency estimation. The performance of the proposed approach has been evaluated on two set of images: the first one is self collected using a capacitive semiconductor sensor and second one is DB3 database from Fingerprint Verification Competition (FVC).

A Study on the Productivity Improvement of the Dicing Blade Production Process (다이싱 블레이드 제조공정의 생산성향상에 관한 연구)

  • Mun, Jung-Su;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.147-155
    • /
    • 2016
  • Industry 4.0's goal is the 'Smart Factory' that integrates and controls production process, procurement, distribution and service based on the fundamental technology such as internet of the things, cyber physical system, sensor, etc. Basic requirement for successful promotion of this Industry 4.0 is the large supply of semiconductor. However, company I who produces dicing blades has difficulty to meet the increasing demand and has hard time to increase revenue because its raw material includes high price diamond, and requires very complex and sensitive process for production. Therefore, this study is focused on understanding the problems and presenting optimal plan to increase productivity of dicing blade manufacturing processes. We carried out a study as follows to accomplish the above purposes. First, previous researches were investigated. Second, the bottlenecks in manufacturing processes were identified using simulation tool (Arena 14.3). Third, we calculate investment amount according to added equipments purchase and perform economic analysis according to cost and sales increase. Finally, we derive optimum plan for productivity improvement and analyze its expected effect. To summarize these results as follows : First, daily average blade production volume can be increased two times from 60 ea. to 120 ea. by performing mixing job in the day before. Second, work flow can be smoother due to reduced waiting time if more machines are added to improve setting process. It was found that average waiting time of 23 minutes can be reduced to around 9 minutes from current process. Third, it was found through simulation that the whole processing line can compose smoother production line by performing mixing process in advance, and add setting and sintering machines. In the course of this study, it was found that adding more machines to reduce waiting time is not the best alternative.

Design of a 2.4-GHz Fully Differential Zero-IF CMOS Receiver Employing a Novel Hybrid Balun for Wireless Sensor Network

  • Chang, Shin-Il;Park, Ju-Bong;Won, Kwang-Ho;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • A novel compact model for a five-port transformer balun is proposed for the efficient circuit design of hybrid balun. Compared to the conventional model, the proposed model provides much faster computation time and more reasonable values for the extracted parameters. The hybrid balun, realized in $0.18\;{\mu}m$ CMOS, achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart only at a current consumption of 0.67 mA from 1.2 V supply. By employing the hybrid balun, a differential zero-IF receiver is designed in $0.18\;{\mu}m$ CMOS for IEEE 802.15.4 ZigBee applications. It is composed of a differential cascode LNA, passive mixers, and active RC filters. Comparative investigations on the three receiver designs, each employing the hybrid balun, a simple transformer balun, and an ideal balun, clearly demonstrate the advantages of the hybrid balun in fully differential CMOS RF receivers. The simulated results of the receiver with the hybrid balun show 33 dB of conversion gain, 4.2 dB of noise figure with 20 kHz of 1/f noise corner frequency, and -17.5 dBm of IIP3 at a current consumption of 5 mA from 1.8 V supply.

Gas sensing characteristics of $TiO_{2}/WO_{3}$ thick film for hydrocarbon gas (후막형 $TiO_{2}/WO_{3}$ 소자의 탄화수소계가스에 대한 감도 특성)

  • Chang, Dong-Hyuck;Choi, Dong-Han
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.21-27
    • /
    • 1996
  • Thick film $TiO_{2}/WO_{3}$ butane gas sensors were fabricated by the screen printing method and their gas sensing characteristics were investigated. The sensitivity of $TiO_{2}/WO_{3}$ thick film was higher than that of pure $WO_{3}$ film to butane. The $WO_{3}$ film with 2wt.% $TiO_{2}$ showed the highest sensitivity to butane. And the optimum heat treatment temperature was $650^{\circ}C$. That film showed the highest sensitivity to butane at the operating temperature of $350^{\circ}C$. The sensitivity of the film to 20000ppm butane in air was 80% at the operating temperature of $350^{\circ}C$.

  • PDF

Effect of Crystal Orientation on Material Removal Characteristics in Sapphire Chemical Mechanical Polishing (사파이어 화학기계적 연마에서 결정 방향이 재료제거 특성에 미치는 영향)

  • Lee, Sangjin;Lee, Sangjik;Kim, Hyoungjae;Park, Chuljin;Sohn, Keunyong
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.106-111
    • /
    • 2017
  • Sapphire is an anisotropic material with excellent physical and chemical properties and is used as a substrate material in various fields such as LED (light emitting diode), power semiconductor, superconductor, sensor, and optical devices. Sapphire is processed into the final substrate through multi-wire saw, double-side lapping, heat treatment, diamond mechanical polishing, and chemical mechanical polishing. Among these, chemical mechanical polishing is the key process that determines the final surface quality of the substrate. Recent studies have reported that the material removal characteristics during chemical mechanical polishing changes according to the crystal orientations, however, detailed analysis of this phenomenon has not reported. In this work, we carried out chemical mechanical polishing of C(0001), R($1{\bar{1}}02$), and A($11{\bar{2}}0$) substrates with different sapphire crystal planes, and analyzed the effect of crystal orientation on the material removal characteristics and their correlations. We measured the material removal rate and frictional force to determine the material removal phenomenon, and performed nano-indentation to evaluate the material characteristics before and after the reaction. Our findings show that the material removal rate and frictional force depend on the crystal orientation, and the chemical reaction between the sapphire substrate and the slurry accelerates the material removal rate during chemical mechanical polishing.

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime