DOI QR코드

DOI QR Code

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection

고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조

  • Jae Han Chung (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Yun-Haeng Cho (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Junho Hwang (Department of Materials Science and Engineering, Yonsei University) ;
  • Su hyeong Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Seunggi Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • See-Hyung Park (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Sungwoo Sohn (Department of Materials Science and Engineering, Yonsei University) ;
  • Donghwi Cho (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Kwangjae Lee (Department of Information Security EngineeringSangmyung University) ;
  • Young-Seok Shim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 정재한 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 조윤행 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 황준호 (연세대학교 신소재공학과) ;
  • 이수형 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이승기 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 박시형 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 손성우 (연세대학교 신소재공학과) ;
  • 조동휘 (한국화학연구원 박막재료연구센터) ;
  • 이광재 (상명대학교 정보보안공학과) ;
  • 심영석 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2024.01.12
  • Accepted : 2024.01.22
  • Published : 2024.01.31

Abstract

The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

Keywords

Acknowledgement

본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004) 본 논문은 한국기술교육대학교 산학협력단 공용장비센터의 지원으로 연구되었음

References

  1. J. Lee, N. G. Do, D. H. Jeong, D. G. Jung, H. K. An, S. H. Kong, and D. Jung, "Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S)", J. Sens. Sci. Technol., Vol.29, No.5 pp.360-364, 2020. https://doi.org/10.46670/JSST.2020.29.5.360
  2. S. K. Pandey, K. H. Kim, and K. T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide", Trends. Analyt. Chem., Vol. 32, pp. 87-99, 2012. https://doi.org/10.1016/j.trac.2011.08.008
  3. S. Navale, M. Shahbaz, S. M. Majhi, A. Mirzaei, H. W. Kim, and S. S. Kim, "CuxO nanostructure-based gas sensors for H2S detection: an overview", Chemosensors, Vol. 9, No. 6, pp. 127(1)-127(20), 2021. https://doi.org/10.3390/chemosensors9060127
  4. R. Shaik, R. K. Kampara, A. Kumar, C. S. Sharma, and M. Kumar, "Metal oxide nanofibers based chemiresistive H2S gas sensors", Coord. Chem. Rev., Vol. 471, p. 214752, 2022.
  5. E. Ashori, F. Nazari, and F. Illas, "Adsorption of H2S on carbonaceous materials of different dimensionality", Int. J. Hydrogen Energy, Vol. 39, No. 12, pp. 6610-6619, 2014. https://doi.org/10.1016/j.ijhydene.2014.02.004
  6. F. I.M. Ali, S. T. Mahmoud, F. Awwad, Y. E. Greish, and A. F. S. Abu-Hani, "Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film", Carbohydr. polym., Vol. 236, p. 116064, 2020.
  7. T. P. Mokoena, Z. P. Tshabalala, K. T. Hillie, H. C. Swart, and D. E. Motaung, "The blue luminescence of p-type NiO nanostructured material induced by defects: H2S gas sensing characteristics at a relatively low operating temperature", Appl. Surf. Sci., Vol. 525, p. 146002, 2020.
  8. S. Yang, J. Sun, L. Xu, Q. Zhou, X. Chen, S. Zhu, B. Dong, G. Lu, and H. Song, "Au@ ZnO functionalized three-dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection", Sens. Actuators B, Vol. 324, p. 128725, 2020.
  9. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Graphene oxide dispersions in organic solvents", Langmuir, Vol. 24, No. 19, pp. 10560-10564, 2008. https://doi.org/10.1021/la801744a
  10. M. F. Craciun, I. Khrapach, M. D. Barnes, and S. Russo, "Properties and applications of chemically functionalized graphene", J. Phys. Condens. Matter, Vol. 25, No. 42, p. 423201, 2013.
  11. V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin, and J. S. Chung, "Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone", J. Mater. Chem., Vol. 21, No. 10, pp. 3371-3377, 2011. https://doi.org/10.1039/C0JM02790A
  12. S. Lee and K. C. Kwon, "Recent Advances and Trends in Metal Oxide-based Semiconductor Gas Sensors", Ceramist, Vol. 26, No. 1, pp. 32-46, 2023. https://doi.org/10.31613/ceramist.2023.26.1.03
  13. Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, "Gas sensors: A review", Sens. Transducers, Vol. 168, No. 4, pp. 61-75, 2014.
  14. W. Oum, "Development of p-type and n-type semiconductor gas sensor for low-power consumption", M. S. thesis, Hanyang University Graduate School, Seoul, KR, 2022.
  15. D. Szczuko, J. Werner, S. Oswald, G. Behr, and K. Wetzig, "XPS investigations of surface segregation of doping elements in SnO2", Appl. Surf. Sci., Vol. 179, No. 1-4, pp. 301-306, 2001. https://doi.org/10.1016/S0169-4332(01)00298-7
  16. C. Kilic and A. Zunger, "Origins of coexistence of conductivity and transparency in SnO2", Phys. Rev. Lett., Vol. 88, No. 9, pp. 095501(1)-095501(5), 2002.
  17. M. Batzill and U. Diebold, "The surface and materials science of tin oxide", Prog. Surf. Sci., Vol. 79, No. 2-4, pp. 47-154, 2005. https://doi.org/10.1016/j.progsurf.2005.09.002
  18. C. S. Cheng, H. Gomi, and H. Sakata, "Electrical and optical properties of Cr2O3 films prepared by chemical vapour deposition", Physica Status Solidi A, Vol. 155, No. 2, pp. 417-425, 1996. https://doi.org/10.1002/pssa.2211550215
  19. A. Holt and P. Kofstad, "Electrical conductivity and defect structure of Cr2O3. II. Reduced temperatures ( https://doi.org/10.1016/0167-2738(94)90402-2
  20. H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuators B, Vol. 192, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
  21. M. Hubner, C. E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, "Influence of humidity on CO sensing with p-type CuO thick film gas sensors", Sens. Actuators B, Vol. 153, No. 2, pp. 347-353, 2011. https://doi.org/10.1016/j.snb.2010.10.046
  22. K. Pirkanniemi and M. Sillanpaa, "Heterogeneous water phase catalysis as an environmental application: a review", Chemosphere, Vol. 48, No. 10, pp. 1047-1060, 2002. https://doi.org/10.1016/S0045-6535(02)00168-6
  23. M. M. Bettahar, G. Costentin, L. Savary, and J. C. Lavalley, "On the partial oxidation of propane and propylene on mixed metal oxide catalysts", Appl. Catal. A Gen., Vol. 145, No. 1-2, pp. 1-48, 1996. https://doi.org/10.1016/0926-860X(96)00138-X
  24. Y. Morooka and A. Ozaki, "Regularities in catalytic properties of metal oxides in propylene oxidation", J. Catal., Vol. 5, No. 1, pp. 116-124, 1966. https://doi.org/10.1016/S0021-9517(66)80131-8
  25. S. S. Kaye and J. R. Long, "Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M= Mn, Fe, Co, Ni, Cu, Zn)", J. Am. Chem. Soc., Vol. 127, No. 18, pp. 6506-6507, 2005. https://doi.org/10.1021/ja051168t
  26. B.-Y. Song, L.-H. Liu, M. Yang, X.-F. Zhang, Z.-P. Deng, Y.-M. Xu, L.-H. Huo, and S. Gao, "Biotemplate-directed synthesis of Cr2O3 mesoporous monotubes for enhanced sensing to trace H2S gas", Sens. Actuators B, Vol. 369, p. 132294, 2022.
  27. B.-Y. Song, X.-F. Zhang, J. Huang, X.-L. Cheng, Z.-P. Deng, Y.-M. Xu, L.-H. Huo, and S. Gao, "Porous Cr2O3 architecture assembled by nano-sized cylinders/ellipsoids for enhanced sensing to trace H2S gas", ACS Appl. Mater. Interfaces, Vol. 14, No. 19, pp. 22302-22312, 2022. https://doi.org/10.1021/acsami.2c03154
  28. V. Balouria, A. Kumar, A. Singh, S. Samanta, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, and J. V. Yakhmi, "Temperature dependent H2S and Cl2 sensing selectivity of Cr2O3 thin films", Sens. Actuators B, Vol. 157, No. 2, pp. 466-472, 2011. https://doi.org/10.1016/j.snb.2011.05.002
  29. S. Ahmed and S. K. Sinha, "Studies on nanomaterial-based p-type semiconductor gas sensors", Environ. Sci. Pollut. Res., Vol. 30, No. 10, pp. 24975-24986, 2023.
  30. J. M. Jeon, Y. S. Shim, S. D. Han, Y. H. Kim, C. Y. Kang, J. S. Kim, M. Kim, and H. W. Jang, "Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases", J. Mater. Chem. A, Vol. 3, No. 35, pp. 17939-17945, 2015. https://doi.org/10.1039/C5TA03293H
  31. R. Kattumenu, C. H. Lee, L. Tian, M. E. McConney, and S. Singamaneni, "Nanorod decorated nanowires as highly efficient SERS-active hybrids", J. Mater. Chem., Vol. 21, No. 39, pp. 15218-15223, 2011. https://doi.org/10.1039/c1jm12426a
  32. D. H. Kim, Y.-S. Shim, H. G. Moon, H. J. Chang, D. Su, S. Y. Kim, J.-S. Kim, B. K. Ju, S.-J. Yoon, and H. W. Jang, "Highly ordered TiO2 nanotubes on patterned substrates: synthesis-in-place for ultrasensitive chemiresistors", J. Phys. Chem. C, Vol. 117, No. 34, pp. 17824-17831, 2013. https://doi.org/10.1021/jp405150b
  33. J. M. Suh, Y.-S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J.-M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J.-H. Lee, C.-Y. Kang, and H. W. Jang, "Synergetically selective toluene sensing in hematite?decorated nickel oxide nanocorals", Adv. Mater. Technol., Vol. 2, No. 3, p. 1600259, 2017.
  34. N. Nasiri and C. Clarke, "Nanostructured chemiresistive gas sensors for medical applications", Sensors, Vol. 19, No. 3, p. 462, 2019.
  35. N. Yamazoe and K. Shimanoe, "New perspectives of gas sensor technology", Sens. Actuators B, Vol. 138, No. 1, pp. 100-107, 2009. https://doi.org/10.1016/j.snb.2009.01.023
  36. A. Tricoli, M. Righettoni, and A. Teleki, "Semiconductor gas sensors: dry synthesis and application", Angew. Chem. Int. Ed., Vol. 49, No. 42, pp. 7632-7659, 2010. https://doi.org/10.1002/anie.200903801
  37. R. Bo, N. Nasiri, H. Chen, D. Caputo, L. Fu, and A. Tricoli, "Low-voltage high-performance UV photodetectors: an interplay between grain boundaries and debye length", ACS Appl. Mater. Interfaces, Vol. 9, No. 3, pp. 2606-2615, 2017. https://doi.org/10.1021/acsami.6b12321
  38. N. Nasiri, R. Bo, H. Chen, T. P. White, L. Fu, and A. Tricoli, "Structural engineering of nano?grain boundaries for low?voltage UV?photodetectors with gigantic photo?to dark?current ratios", Adv. Opt. Mater., Vol. 4, No. 11, pp. 1787-1795, 2016. https://doi.org/10.1002/adom.201600273
  39. X.-T. Yin, J. Li, Q. Wang, D. Dastan, Z.-C. Shi, N. Alharbi, H. Garmestani, X.-M. Tan, Y. Liu, and X.-G. Ma, "Opposite sensing response of heterojunction gas sensors based on SnO2-Cr2O3 nanocomposites to H2 against CO and its selectivity mechanism", Langmuir, Vol. 37, No. 46, pp. 13548-13558, 2021. https://doi.org/10.1021/acs.langmuir.1c01706
  40. S. Kwak, Y. S. Shim, Y. K. Yoo, J. H. Lee, I. Kim, J. Kim, K. H. Lee, and J. H. Lee, "MEMS-based gas sensor using PdO-decorated TiO2 thin film for highly sensitive and selective H2 detection with low power consumption", Electronic Mater. Lett., Vol. 14, pp. 305-313, 2018. https://doi.org/10.1007/s13391-018-0030-5
  41. N. Yamazoe and K. Shimanoe, "New perspectives of gas sensor technology", Sens. Actuators B, Vol. 138, No. 1, pp. 100-107, 2009. https://doi.org/10.1016/j.snb.2009.01.023