• Title/Summary/Keyword: Semiconductor chip

Search Result 648, Processing Time 0.028 seconds

A Study on the Design Method of Hybrid MOSFET-CNTFET based SRAM (하이브리드 MOSFET-CNTFET 기반 SRAM 디자인 방법에 관한 연구)

  • Geunho Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • More than 10,000 Carbon NanoTube Field Effect Transistors (CNTFETs), which have advantages such as high carrier mobility, large saturation velocity, low intrinsic capacitance, flexibility, and transparency, have been successfully integrated into one semiconductor chip using conventional semiconductor design procedures and manufacturing processes. Three-dimensional multilayer structure of the CNTFET semiconductor chip and various CNTFET manufacturing process research increase the possibility of making the hybrid MOSFET-CNTFET semiconductor chip which combines conventional MOSFETs and CNTFETs together in a semiconductor chip. This paper discusses a methodology to design 6T binary SRAM using hybrid MOSFET-CNTFET. By utilizing the existing MOSFET SRAM or CNTFET SRAM design method, we will introduce a method of designing a hybrid MOSFET-CNTFET SRAM and compare its performance with the conventional MOSFET SRAM and CNTFET SRAM.

The Development of Fine Pitch Bare-chip Process and Bonding System (미세 피치를 갖는 bare-chip 공정 및 시스템 개발)

  • Shim Hyoung Sub;Kang Heui Seok;Jeong Hoon;Cho Young June;Kim Wan Soo;Kang Shin Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.33-37
    • /
    • 2005
  • Bare-chip packaging becomes more popular along with the miniaturization of IT components. In this paper, we have studied flip-chip process, and developed automated bonding system. Among the several bonding method, NCP bonding is chosen and batch-type equipment is manufactured. The dual optics and vision system aligns the chip with the substrate. The bonding head equipped with temperature and force controllers bonds the chip. The system can be easily modified fer other bonding methods such as ACF.

  • PDF

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

GHz EMI Characteristics of 3D Stacked Chip PDN with Through Silicon Via (TSV) Connections

  • Pak, Jun-So;Cho, Jong-Hyun;Kim, Joo-Hee;Kim, Ki-Young;Kim, Hee-Gon;Lee, Jun-Ho;Lee, Hyung-Dong;Park, Kun-Woo;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.282-289
    • /
    • 2011
  • GHz electromagnetic interference (EMI) characteristics are analyzed for a 3dimensional (3D) stacked chip power distribution network (PDN) with through silicon via (TSV) connections. The EMI problem is mostly raised by P/G (power/ground) noise due to high switching current magnitudes and high PDN impedances. The 3D stacked chip PDN is decomposed into P/G TSVs and vertically stacked capacitive chip PDNs. The TSV inductances combine with the chip PDN capacitances produce resonances and increase the PDN impedance level in the GHz frequency range. These effects depend on stacking configurations and P/G TSV designs and are analyzed using the P/G TSV model and chip PDN model. When a small size chip PDN and a large size chip PDN are stacked, the small one's impedance is more seriously affected by TSV effects and shows higher levels. As a P/G TSV location is moved to a corner of the chip PDNs, larger PDN impedances appear. When P/G TSV numbers are enlarged, the TSV effects push the resonances to a higher frequency range. As a small size chip PDN is located closer to the center of a large size chip PDN, the TSV effects are enhanced.

Low-Power 512-Bit EEPROM Designed for UHF RFID Tag Chip

  • Lee, Jae-Hyung;Kim, Ji-Hong;Lim, Gyu-Ho;Kim, Tae-Hoon;Lee, Jung-Hwan;Park, Kyung-Hwan;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.347-354
    • /
    • 2008
  • In this paper, the design of a low-power 512-bit synchronous EEPROM for a passive UHF RFID tag chip is presented. We apply low-power schemes, such as dual power supply voltage (VDD=1.5 V and VDDP=2.5 V), clocked inverter sensing, voltage-up converter, I/O interface, and Dickson charge pump using Schottky diode. An EEPROM is fabricated with the 0.25 ${\mu}m$ EEPROM process. Power dissipation is 32.78 ${\mu}W$ in the read cycle and 78.05 ${\mu}W$ in the write cycle. The layout size is 449.3 ${\mu}m$ ${\times}$ 480.67 ${\mu}m$.

  • PDF

A Disposable BioChip for Single Cell Manipulation

  • Yoon, Euisik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.10a
    • /
    • pp.1-15
    • /
    • 2004
  • o Various microfluidic components including mixromixers and micropumps have been developed for disposable biochip applications. o Single cell capturing, positioning and nanoliter drug injection chip has been demostrated. o Multi-channel, two-dimensional micro-well array has been fabricated and cell capturing and specific reagent injection have been performed.

  • PDF

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.

Scheduling Methodology for MCP(Multi-chip Package) with Layer Sequence Constraint in Semiconductor Package (반도체 Package 공정에서 MCP(Multi-chip Package)의 Layer Sequence 제약을 고려한 스케쥴링 방법론)

  • Jeong, Young-Hyun;Cho, Kang-Hoon;Choung, You-In;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • An MCP(Multi-chip Package) is a package consisting of several chips. Since several chips are stacked on the same substrate, multiple assembly steps are required to make an MCP. The characteristics of the chips in the MCP are dependent on the layer sequence. In the MCP manufacturing process, it is very essential to carefully consider the layer sequence in scheduling to achieve the intended throughput as well as the WIP balance. In this paper, we propose a scheduling methodology considering the layer sequence constraint.

미세 피치를 갖는 bare-chip 공정 및 시스템 개발

  • 강희석;정훈;조영준;김완수;강신일;심형섭
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.79-83
    • /
    • 2005
  • IT 기술, 반도체 산업 등의 급격한 발전에 힘입어 최근의 첨단 전자, 통신제품은 초경량 초소형화와 동시에 고기능 복합화의 발전 추세를 보이고 있다. 이런 추세에 발맞추어 전자제품, 통신제품의 핵심적인 부품인 IC chip도 소형화되고 있다. IC chip 패키징 기술의 하나인 Filp Chip Package는 Module Substrate 위에 Chip Surface를 Bumping 시킴으로서 최단의 접속길이와 저열저항, 저유전율의 특성도 가지면서 초소형에 높은 수율의 저 원가생산성을 갖는 첨단의 패키징 기술이다. 이런 패키징 기술은 수요증가와 더불어 폭발적으로 늘어나고 있으나 까다로운 공정기술에 의해 아직 여러 회사에서 장비가 출시되고 있지 못한 상태이다. 이에 본 연구에서는 최근 수요가 증가하는 LCD Driver IC용 COF 장비를 위한 Flip chip Bonding 장비 및 시스템을 설계, 제작하였다.

  • PDF