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In this paper, the design of a low-power 512-bit 
synchronous EEPROM for a passive UHF RFID tag chip 
is presented. We apply low-power schemes, such as dual 
power supply voltage (VDD=1.5 V and VDDP=2.5 V), 
clocked inverter sensing, voltage-up converter, I/O 
interface, and Dickson charge pump using Schottky diode. 
An EEPROM is fabricated with the 0.25 µm EEPROM 
process. Power dissipation is 32.78 µW in the read cycle 
and 78.05 µW in the write cycle. The layout size is 449.3 
µm × 480.67 µm. 
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I. Introduction 

Radio frequency identification (RFID) is the technology to 
provide various communication services between objects by 
collecting, storing, and revising information regarding these 
objects by using RFID tags installed or attached to them. RFID 
tags are classified according to communication ability, battery 
existence, and read/write function as shown in Table 1 [1]. 
They are standardized by Electronic Product Code (EPC) 
Global. Currently, passive RFID tags are more widely used 
than their active counterparts because they are low-cost and 
small-sized. Therefore, more effort has been devoted to the 
development of the passive tags [2]. 

A class 1 generation 2 tag is a passive tag like class 0 and 
class 2 tags, but it has advantages of cost and size. It can read 
and write, but it also has a lock function for security and a kill 
function, which causes the tag to be reprogrammed or instructs 
it to self-destruct. These advantages are expected to apply in 
logistics, traffic, and inventory management; therefore, there is 
a great deal of research progressing in this area. 

A passive UHF RFID tag comprises an antenna and a tag 
chip as shown in Fig. 1. The tag chip consists of analog, logic, 
and memory blocks [3]. In the analog block there is a 
demodulator to convert frequency into data, a modulator to 
convert data into frequency, and a voltage multiplier to convert 
energy from the antenna into supply voltage in the analog 
circuit. The logic controls the operation modes of the analog 
block, checks the protocol, performs the cyclic redundancy 
check (CRC), and checks for errors. The memory block must 
be read out and written in; therefore, non-volatile memory, that 
is, EEPROM, which keeps data during power-down, is often 
used. A low-power circuit is required to transfer data to the  
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Table 1. Classification of RFID tags. 

EPC tag 
class Capabilities Memory 

Class 0 
Read only (i.e., the EPC number is encoded 
onto the tag during manufacture and can be 
read by a reader) 

64 bits 

Class 1 Read, write once→write many (Generation 2) 
96 bits 

128/256 bits 
(Generation 2)

Class 2 Read, write. Larger memory

Class 3 
Class 2 capabilities plus a power source to 
provide increased range and/or advanced 
functionality 

 

Class 4 
Class 3 capabilities plus active 
communication and the ability to 
communicate with other active tags 

 

Class 5 Class 4 capabilities plus the ability to 
communicate with passive tags as well  

 

 

Fig. 1. Architecture of RFID tag chip. 
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reader and to check identifications because the voltage 
multiplier of the analog block transforms UHF signal into 
power [4]. 

II. Circuit Design 

Figure 2 shows a block diagram of the 512-bit synchronous 
EEPROM. It consists of a cell array (64 rows × 8 columns), a 
row decoder, a data buffer, control logic to generate control 
signals at different operation modes, and a DC-DC converter to 
provide high voltages (VPP and VPPL). The interface signals 
are clock control signals, command control signals, address bus, 
and bi-directional data bus. The clock control signals are clock 
(CLK) and clock enable (CKE). For command control signals, 
there are REb (read enable), WEb (write enable), OEb (output 
enable), ERSb (erase), PGMb (program), and RSTb (reset).  

The width of the address bus is 6, and that of the data is 8. 
One of 64 bytes is selected by 6 address lines, and the unit of 
operation is one byte in both read and write modes. The main 
features of the EEPROM are shown in Table 2. 

Figure 3 shows the cross-sectional view of an EEPROM cell.  

 

Fig. 2. Block diagram of 512-bit synchronous EEPROM. 
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Table 2. Main features of the EEPROM. 

Items Main features 

Technology 0.25 µm EEPROM process 

Memory cell EEPROM 

ONO thickness 100Å 

Operating modes Erase / program / read / stand-by 

Supply voltage VDD=1.5 V / VDDP=2.5 V 

BL sensing scheme Clocked inverter 

Charge pump Dickson pump 

 

 

HV gate oxide 
Tunnel oxide 

ONO

Control gate 

Fig. 3. Cross-sectional view of EEPROM cell. 
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The dielectric between the control gate and the floating gate is 
surrounded by oxide-nitride-oxide to get a high coupling ratio, 
and the EEPROM is in the triple-well [5]. The cells can be 
erased and programmed by Fowler-Nordheim tunneling. The 
control gate is connected to the word-line (WL), that is, the  
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Fig. 4. Write timing diagram of synchronous EEPROM. 
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Fig. 5. Read timing diagram of synchronous EEPROM. 
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output node of the row decoder. The EEPROM has four 
operating modes: program, erase, read, and stand-by. They 
operate synchronously with the clock signal. Write mode 
includes program and erase modes. Dual power supply voltage, 
VDD (1.5 V) and VDDP (2.5 V), is used to reduce the current 
in both read and write modes.  

Figure 4 shows a write timing diagram in which one byte 
cell is first erased and then data is programmed. Figure 5 shows 
a read timing diagram of the synchronous EEPROM. Data in 
the read cycle is transferred by the logic circuit of the tag chip 
at the rising edge of the next clock cycle after the read 
command is enabled. 

Table 3 shows bias voltage levels of the EEPROM cell for the 
four operating modes. The WL voltage of the selected cell is  
16.5 V, that is VPP (boosted voltage), in the program mode. The 
bit-line (BL) voltage is 15 V (VPP) in the erase mode. The non-
selected BL voltage is 11.5 V (VPP-5 V) in the program mode 
and 11 V (VPP-4 V) in the erase mode. When normal transistors 
that have low break-down voltage are connected to the row 
decoder and column select circuits, device reliability problems 
occur. For that reason, high voltage transistors with threshold 
voltages between 0.87 V and 1.29 V have to be used to stand 
high voltage in the row decoder and column select circuits. If 
only VDDP is used, the circuits operate properly, but power  

Table 3. Bias voltage conditions for the four operation modes of the 
EEPROM cell.                                    (V)

Program Erase Read 
Stand-

by 
 

Selected
cell 

Non-
selected

cell 

Selected 
cell 

Non-
selected 

cell 

Selected 
cell 

Non-
selected

cell 

Selected
cell 

Word-
line 

16.5 0 0 11 2.5 0 0 

Bit-line 0 11.5 15 11 1.5 Floating Floating
Source-

line 
Floating Floating Floating Floating 0 0 0 

HV-
Pwell

0 0 15 0 0 0 0 

Deep-
Nwell

2.5 2.5 15 15 2.5 2.5 2.5 

 

Fig. 6. Clocked inverter sensing circuit. 
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dissipation increases in proportion to VDDP in the read mode. 
On the other hand, if only VDD is used in the circuits, power 
dissipation decreases; however, circuits that have transistors with 
a threshold voltage of 1.29 V do not operate properly. Therefore 
dual power supply voltage (VDDP for high voltage transistors 
and VDD for the others) is used to reduce power dissipation. 

A clocked inverter sensing method is applied to read out the 
data of EEPROM cells in the read mode [8]. Usually, a current 
sensing circuit is used for the non-volatile memory [6]. This is 
not proper in the EEPROM design for RFID tag chips because 
the current dissipation of the sensing circuit is large. Therefore, a 
low-speed low-power read data (RD) sense amplifier should be 
used without a reference current biasing circuit. The clocked 
inverter sensing circuit is shown in Fig. 6. 

A short pulse is generated by the PRECHARGE signal before 
the control gate voltage (WL) is active in the read mode. It drives 
a PMOS transistor, MP0, to the precharge DLINE signal to 
VDD. After the WL is active, the DLINE signal keeps the VDD  
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Fig. 7. Block diagram of the DC-DC converter. 
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Table 4. VREF, VREF_VPP, VPP, and VPPL voltage levels in 
different operating modes.                         (V)

 Program Erase Read Stand-by

VREF 0.75 0.685 0 0 

VREF_VPP 1.5 1.37 0 0 

VPP 16.5 15 2.5 2.5 

VPPL 11.5 11 2.5 2.5 

 

 

Fig. 8. Voltage-up converter circuit. 
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level because current cannot flow through the programmed cells. 
On the other hand, the DLINE signal is almost 0 V because 
current flows through the non-programmed cells. If there is 
enough data to be transferred to the DLINE signal, the SAENb 
signal in the clocked inverter is enabled, and the data is read out 
to DLINE. The load transistor, MP1, acts like an active load 
while WL is selected. It prevents DLINE falling to 0 V because 
the leakage current during EEPROM is off. 

Figure 7 shows a block diagram of the DC-DC converter, 
which uses a Dickson charge pump [7] to generate high voltage  

 

Fig. 9. I/O interface circuit. 
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Table 5. Power dissipation comparison in the program mode. 

 PN diode Schottky diode 
Power dissipation in the 

program mode 
65.7 µW 57.7 µW 

 

in the write mode. It consists of a bandgap reference voltage 
generator, a VPP level detector, a ring oscillator, a VPP control 
logic, and a charge pump. 

If VPP is lower than the target voltage of the load current, 
VPP_EN becomes high. Then, a ring oscillator oscillates to 
increase VPP. That causes a positive charge to pump into the 
VPP node and VPP increases. If VPP is higher than the target 
voltage, then VPP_EN (the output of the VPP level detector) is 
low and pumping stops in order to keep the output voltage to 
VPP by using negative feedback. To decrease power dissipation, 
VDD power is used in the bandgap reference voltage generator, 
VPP level detector, and ring oscillator circuits, and VDDP power 
is used in the voltage-up converter, VPP control logic, and charge 
pump circuits. In the VPP level detector circuit, an eleventh of 
VPP, which is divided by NMOS diodes in series, is compared 
with VREF_VPP to control the charge pump. The VREF_VPP 
is 1.5 V in the program mode and 1.37 V in the erase mode as 
shown in Table 4. For low power dissipation, the VDD power 
source which is lower than the VDDP power source is used in 
the bandgap reference voltage generator. However, it cannot 
generate the reference voltage, 1.5 V, using only VDD power.  
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Fig. 10. Timing diagram for the case of critical path in the read cycle. 
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For this reason, a low-power voltage-up converter circuit is used 
to boost VREF, which can guarantee the reference voltage, 
VREF_VPP. Power dissipation can be lower when the voltage 
converter is used compared to using only a VDDP power source. 

Figure 8 shows a voltage-up converter circuit which doubles 
the VREF in the reference voltage generator [8]. It generates 
the input voltage of the VPP level detector. The voltage-up 
converter consists of a differential amplifier, a common source 
amplifier, and a voltage divider using PMOS diodes. Identical 
PMOS diodes, MP2 and MP3, make up a voltage divider. The 
feedback voltage (VFB) is set to half of VREF_VPP. When 
VREF and VFB are equal by negative feedback, VREF_VPP 
makes VREF double. 

The RD_DO data voltage swings between VDD and VSS. 
The I/O data voltage swings between VDDP and VSS. If the 
I/O voltage swings between VDD and VSS, it induces a short 
circuit in the adjacent block connected to I/O signal because it 
swings between VDDP and VSS. For this reason, the VDD-to-
VDDP voltage-level translator shown in Fig. 9 is needed for 
the I/O interface. 

The Dickson charge pump generates VPP and VPPL in the 
write mode. It has lower power dissipation by using the lower 
forward bias diode voltage drop. For this reason, a Schottky 
diode is used for the pump. Table 5 compares the power 

dissipation of the Dickson charge pump using a PN diode and 
using a Schottky diode in the program mode. The power 
dissipation using a Schottky diode is approximately 12% lower 
than that using a PN diode. 

III. Simulation and Test Results 

The EEPROM is designed using the 0.25 µm EEPROM 
process for UHF RFID tag chips. Figure 10 shows timing 
diagrams of CLK from the analog block; command control 
signals CKE, REb, and OEb from the logic block; and 
PCHARGE, DLINE_LOADb, and SAENb from the control 
logic block as shown in Fig. 2. When a read command enters at 
the rising edge, PCHARGE makes DLINE and BL precharge to 
VDD. The WL is active after the BL is precharged. When data is 
transferred to the BL, valid data comes out of the I/O by SAENb 
through the RD_DO within half a clock period. 

Figure 11 shows a layout image for the 0.25 µm EEPROM 
process. The areas of the analog, logic, and cell array are 
marked. The layout size is 449.3 µm × 480.67 µm. Figure 12 
shows an image of the fabricated EEPROM. 

Figure 13 is a shmoo plot of the fabricated EEPROM. 
Functions are tested by performing the read cycle after the 
erase cycle and the read cycle after the program cycle, using  
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Fig. 11. EEPROM layout. 
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Fig. 12. Image of the fabricated EEPROM IP. 
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Fig. 13. Shmoo plot of the fabricated EEPROM. 
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Table 6. Power dissipation results at VDD=1.5 V, VDDP=2.5 V, and 
Temp=25℃. 

Operating mode Operating current Dissipated power

VDD 24.7 µA 
Erase 

VDDP 9.6 µA 
61.1 µW 

VDD 23.4 µA 
Program 

VDDP 17.2 µA 
78.1 µW 

VDD 16.8 µA 
Read 

VDDP 1.4 µA 
28.7 µW 

 

 
the timing diagrams of Figs. 4 and 5. All cases are passed 
except at VDD=1.0 V. This means that the EEPROM has a 
wide operation margin. 

Table 6 shows power dissipation test results for different 
operating modes. The results show that the designed 512-bit 
EEPROM is suitable for RFID tag chip memory applications. 

IV. Conclusion 

In this paper, the design of a low-power 512-bit synchronous 
EEPROM with EEPROM cells for a passive UHF RFID tag 
chip was presented. Dual power supply voltage, VDD (1.5 V) 
and VDDP (2.5 V), was used to reduce the current and the 
power in the read and write modes. Also, a sensing method using 
clocked inverter in the read mode was applied. The VREF_VPP 
was made by using a voltage-up converter in the write cycle. A 
level translator was applied to the I/O interface to reduce short 
circuiting. A Schottky diode was used for lower power 
dissipation in the Dickson charge pump.  

We demonstrated that the EEPROM fabricated with a    
0.25 µm EEPROM process has a wide operation margin and 
low power dissipation of 78.1 µW in the program mode,  
61.11 µW in the erase mode, and 28.7 µW in the read mode. 
The proposed EEPROM is suitable for UHF RFID class 1 
generation 2 tag chip applications. 
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