• Title/Summary/Keyword: Semiconductor amplifier

Search Result 346, Processing Time 0.026 seconds

A Low Power, Small Area Cyclic Time-to-Digital Converter in All-Digital PLL for DVB-S2 Application

  • Kim, Hongjin;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • In this paper, a low power, small area cyclic time-to-digital converter in All-Digital PLL for DVB-S2 application is presented. Coarse and fine TDC stages in the two-step TDC are shared to reduce the area and the current consumption maintaining the resolution since the area of the TDC is dominant in the ADPLL. It is implemented in a 0.13 ${\mu}m$ CMOS process with a die area of 0.12 $mm^2$. The power consumption is 2.4 mW at a 1.2 V supply voltage. Furthermore, the resolution and input frequency of the TDC are 5 ps and 25 MHz, respectively.

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.

An Analysis of Wideband Digital Radio Frequency Signal Reproduction Characteristics (광대역 디지털 고주파 신호 복제 특성 분석)

  • Chae Gyoo-Soo;Lim Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.401-406
    • /
    • 2005
  • Digital memory circuits have been developed very fast according to the progress of semiconductor technology. But it was very difficult to memorize a wideband radio frequency signals. Many years ago, an analog frequency memory loop(FML) was used for store of radio frequency signal and the digital radio frequency memory was made according to the development of wideband amplifier and high speed sampler. We present a design of wideband digital radio frequency reproduction device using ladder circuit and the simulation results with respect to the sampling speed in this paper.

  • PDF

Noise Performance Design of CMOS Preamplifier for the Active Semiconductor Neural Probe (신경신호기록용 능동형 반도체미세전극을 위한 CMOS 전치증폭기의 잡음특성 설계방법)

  • 김경환;김성준
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.477-485
    • /
    • 2000
  • 본 논문에서는 신경신호기록을 위한 반도체 미세전극용 전치증폭기의 잡음특성을 설계하기 위한 체계적인 방법을 제시한다. 세포외기록(extracellular recording)에 의하여 측정된 신경신호와 전형적인 CMOS소자의 저주파 잡음특성을 함계 고려하여 전체 신호대잡음비를 계산하였다. 2단 CMOS 차동증폭기에 대한 해석과 함께 신호대잡음비에 중요한 영향을 끼치는 요소들에 대하여 설명하였다. 출력잡음전력에 대한 해석적인식을 유도하였으며 이로부터 회로설계자가 조절할 수 있는 주파수응답과 소자 파라미터들을 결정하였다. 입력소자의 크기와 트랜스컨덕턴스의 비가 최적영역으로부터 약간 벗어날 경우에 신호대잡음비가 크게 저하됨을 보였다. 이와 함께 만족스런 잡음특성을 위한 증폭이의 설계 변수 값들도 제시하였다.

  • PDF

Wavelength Conversion Using XPM of PbO-doped Fiber in a Mach-Zehnder Interferometer (PbO가 첨가된 광섬유의 XPM을 이용한 MZI 기반 파장변환)

  • 김명석;오승태;김윤현;한원택;백운출;정영주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.16-17
    • /
    • 2003
  • 지난 수년간 인터넷 보급에 따른 급격한 통신량 증가에 따른 요구는 차세대 통신 기술인 WDM을 구축하게 되었고 이에 따라 WDM 라우팅 기술과 스위칭 기술이 절실히 필요로 하게 되었다. WDM에 있어서 다른 경로나 목적지로 신호를 보내기 위해서는 신호의 파장이 변환 되어야 하므로 신호의 파장변환은 라우팅에 있어 핵심적인 기술 중 하나로 인식되어지고 있다 현재 사용되어지고 있는 전광 파장 변환기는 주로 SOA (Semiconductor Optical Amplifier)의 비선형 특성인 XGM, XPM, FWM등을 이용한 것으로서 편광 민감성, ASE에 의한 SNR 감소, 신호크기 변형과 높은 가격으로 인해 안정적인 파장변환기로 쓰기에는 다소 무리가 있다. (중략)

  • PDF

Quadrature VCO as a Subharmonic Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • This paper proposes two types of subharmonic RF receiver front-end (called LMV) where, in a single stage, quadrature voltage-controlled oscillator (QVCO) is stacked on top of a low noise amplifier. Since the QVCO itself plays the role of the single-balanced subharmonic mixer with the dc current reuse technique by stacking, the proposed topology can remove the RF mixer component in the RF front-end and thus reduce the chip size and the power consumption. Another advantage of the proposed topologies is that many challenges of the direct conversion receiver can be easily evaded with the subharmonic mixing in the QVCO itself. The intermediate frequency signal can be directly extracted at the center taps of the two inductors of the QVCO. Using a 65 nm complementary metal oxide semiconductor (CMOS) technology, the proposed subharmonic RF front-ends are designed. Oscillating at around 2.4 GHz band, the proposed subharmonic LMVs are compared in terms of phase noise, voltage conversion gain and double sideband noise figure. The subharmonic LMVs consume about 330 ㎼ dc power from a 1-V supply.

The Burst Effect Analysis of 2.5 Gb/s TDM-PON Systems Using a SOA Link Extender (반도체광증폭기로 전송거리 확장된 2.5 Gb/s TDM-PON에서 버스트 효과에 의한 신호왜곡 분석)

  • Choi, Bo-Hun;Lee, Sang Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • A bidirectional TDM-PON link to support 2.5 Gb/s upstream signals of 256 ONUs was considered for an extended transmission distance of 50 km. The power budget of the link was 58 dB for the upstream signal and a SOA was applied as a link extender which had a 25 dB gain. Receiver sensitivity of the upstream signal was -25 dBm for -30 dBm input power to the SOA. When the input power was -10 dBm, pulse overshooting caused by gain transient of the SOA was maximum at 45% and the signal performance degradation gave a power penalty of 1.55 dB for $10^{-12}$ BER. However the penalties diminished rapidly and became negligible as the input power went below -15 dBm. So this input power dynamic range of up to -15 dBm means that it is not positively necessary to use gain control methods for the next generation TDM-PON systems.

SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System

  • Lee, Eui Su;Kim, Namje;Han, Sang-Pil;Lee, Donghun;Lee, Won-Hui;Moon, Kiwon;Lee, Il-Min;Shin, Jun-Hwan;Park, Kyung Hyun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.665-674
    • /
    • 2016
  • We designed and fabricated a semiconductor optical amplifier-integrated dual-mode laser (SOA-DML) as a compact and widely tunable continuous-wave terahertz (CW THz) beat source, and a pin-photodiode (pin-PD) integrated with a log-periodic planar antenna as a CW THz emitter. The SOA-DML chip consists of two distributed feedback lasers, a phase section for a tunable beat source, an amplifier, and a tapered spot-size converter for high output power and fiber-coupling efficiency. The SOA-DML module exhibits an output power of more than 15 dBm and clear four-wave mixing throughout the entire tuning range. Using integrated micro-heaters, we were able to tune the optical beat frequency from 380 GHz to 1,120 GHz. In addition, the effect of benzocyclobutene polymer in the antenna design of a pin-PD was considered. Furthermore, a dual active photodiode (PD) for high output power was designed, resulting in a 1.7-fold increase in efficiency compared with a single active PD at 220 GHz. Finally, herein we successfully show the feasibility of the CW THz system by demonstrating THz frequency-domain spectroscopy of an ${\alpha}$-lactose pellet using the modularized SOA-DML and a PD emitter.

A Wafer Level Packaged Limiting Amplifier for 10Gbps Optical Transmission System

  • Ju, Chul-Won;Min, Byoung-Gue;Kim, Seong-Il;Lee, Kyung-Ho;Lee, Jong-Min;Kang, Young-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.189-195
    • /
    • 2004
  • A 10 Gb/s limiting amplifier IC with the emitter area of $1.5{\times}10{\mu}m^2$ for optical transmission system was designed and fabricated with a AIGaAs/GaAs HBTs technology. In this stud)', we evaluated fine pitch bump using WL-CSP (Wafer Level-Chip Scale Packaging) instead of conventional wire bonding for interconnection. For this we developed WL-CSP process and formed fine pitch solder bump with the $40{\mu}m$ diameter and $100{\mu}m$ pitch on bonding pad. To study the effect of WL-CSP, electrical performance was measured and analyzed in wafer and package module using WL-CSP. In a package module, clear and wide eye diagram openings were observed and the riselfall times were about 100ps, and the output" oltage swing was limited to $600mV_{p-p}$ with input voltage ranging from 50 to 500m V. The Small signal gains in wafer and package module were 15.56dB and 14.99dB respectively. It was found that the difference of small signal gain in wafer and package module was less then 0.57dB up to 10GHz and the characteristics of return loss was improved by 5dB in package module. This is due to the short interconnection length by WL-CSP. So, WL-CSP process can be used for millimeter wave GaAs MMIC with the fine pitch pad.

Implementation of the Wavelength-Swept-Source and Signal Processing for the Frequency Domain Optical Coherence Tomography (주파수영역 광 간섭 단층촬영 시스템을 위한 파장가변 광원 및 신호처리계의 구현)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.309-316
    • /
    • 2007
  • We demonstrate the wavelength swept source and signal processing for the frequency domain optical coherence tomography. The laser output performance is improved by using a semiconductor optical amplifier with a booster amplifier. The laser generates 14 mW of average power of which wavelength shift in the lasing spectral shape is compensated. Adopting a Fabry-Perot etalon and digital signal processing, the broadening of the beat frequency due to the variance of wavelength-sweep-velocity is calibrated. The optical coherence tomography system shows 154.4 kHz of axial scanning speed, 0.95mm of depth range, and $12{\pm}0.37{\mu}m$ of axial resolution.