• Title/Summary/Keyword: Semiconductor Process Data

Search Result 324, Processing Time 0.03 seconds

A Monitoring System for Functional Input Data in Multi-phase Semiconductor Manufacturing Process (다단계 반도체 제조공정에서 함수적 입력 데이터를 위한 모니터링 시스템)

  • Jang, Dong-Yoon;Bae, Suk-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.3
    • /
    • pp.154-163
    • /
    • 2010
  • Process monitoring of output variables affecting final performance have been mainly executed in semiconductor manufacturing process. However, even earlier detection of causes of output variation cannot completely prevent yield loss because a number of wafers after detecting them must be re-processed or cast away. Semiconductor manufacturers have put more attention toward monitoring process inputs to prevent yield loss by early detecting change-point of the process. In the paper, we propose the method to efficiently monitor functional input variables in multi-phase semiconductor manufacturing process. Measured input variables in the multi-phase process tend to be of functional structured form. After data pre-processing for these functional input data, change-point analysis is practiced to the pre-processed data set. If process variation occurs, key variables affecting process variation are selected using contribution plot for monitoring efficiency. To evaluate the propriety of proposed monitoring method, we used real data set in semiconductor manufacturing process. The experiment shows that the proposed method has better performance than previous output monitoring method in terms of fault detection and process monitoring.

Anomaly Detection Model Based on Semi-Supervised Learning Using LIME: Focusing on Semiconductor Process (LIME을 활용한 준지도 학습 기반 이상 탐지 모델: 반도체 공정을 중심으로)

  • Kang-Min An;Ju-Eun Shin;Dong Hyun Baek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.86-98
    • /
    • 2022
  • Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal (단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류)

  • Cho, Min-Young;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

A Design of Integrated Manufacturing System for Compound Semiconductor Fabrication (화합물 반도체 공장의 통합생산시스템 설계에 관한 연구)

  • 이승우;박지훈;이화기
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2003
  • Manufacturing technologies of compound semiconductor are similar to the process of memory device, but management technology of manufacturing process for compound semiconductor is not enough developed. Semiconductor manufacturing environment also has been emerged as mass customization and open foundry service so integrated manufacturing system is needed. In this study we design the integrated manufacturing system for compound semiconductor fabrication t hat has monitoring of process, reduction of lead-time, obedience of due-dates and so on. This study presents integrated manufacturing system having database system that based on web and data acquisition system. And we will implement them in the actual compound semiconductor fabrication.

Defect Prediction Using Machine Learning Algorithm in Semiconductor Test Process (기계학습 알고리즘을 이용한 반도체 테스트공정의 불량 예측)

  • Jang, Suyeol;Jo, Mansik;Cho, Seulki;Moon, Byungmoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.450-454
    • /
    • 2018
  • Because of the rapidly changing environment and high uncertainties, the semiconductor industry is in need of appropriate forecasting technology. In particular, both the cost and time in the test process are increasing because the process becomes complicated and there are more factors to consider. In this paper, we propose a prediction model that predicts a final "good" or "bad" on the basis of preconditioning test data generated in the semiconductor test process. The proposed prediction model solves the classification and regression problems that are often dealt with in the semiconductor process and constructs a reliable prediction model. We also implemented a prediction model through various machine learning algorithms. We compared the performance of the prediction models constructed through each algorithm. Actual data of the semiconductor test process was used for accurate prediction model construction and effective test verification.

A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process (반도체 제조공정에서의 이상수율 검출 방법론)

  • Lee, Jang-Hee
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF

Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment (준지도학습 기반 반도체 공정 이상 상태 감지 및 분류)

  • Lee, Yong Ho;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.

Fault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria Muhammad;Hong, Sang Jeen
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.429-442
    • /
    • 2014
  • In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental runs to find the faulty runs. It has been shown that the SARIMA modeling for this data can detect faults in the etch tool data from the semiconductor industry with an accuracy of 80% and 90% using the parameter-wise error computation and the step-wise error computation, respectively. We found that SARIMA is useful to detect incipient faults in semiconductor fabrication.

Measurement Technology of Chamber Impedance for RF Matching (RF 정합 특성 개선을 위한 챔버의 임피던스 측정법)

  • 설용태;이의용;박성진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • An adaptor is designed for chamber impedance measurement of plasma process. Copper rod, fixed board and compensation circuit are the major components of the adaptor. An adaptor can be to measure chamber impedance on time unless stopping a process and Data to measure can do the database. We can use it to a criteria data for a failure diagnosis. So developed adaptor could be used for diagnosis the plasma process chamber in semiconductor industry.

  • PDF