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Abstract—In this paper, we investigated the use of seasonal autoregressive integrated 
moving average (SARIMA) time series models for fault detection in semiconductor etch 
equipment data. The derivative dynamic time warping algorithm was employed for the 
synchronization of data. The models were generated using a set of data from healthy 
runs, and the established models were compared with the experimental runs to find the 
faulty runs. It has been shown that the SARIMA modeling for this data can detect faults 
in the etch tool data from the semiconductor industry with an accuracy of 80% and 90% 
using the parameter-wise error computation and the step-wise error computation, 
respectively. We found that SARIMA is useful to detect incipient faults in semiconductor 
fabrication. 
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1. INTRODUCTION 

Over the past decade of continuous improvements being made to semiconductor technologies, 
the device feature size has been scaled down tremendously. As a result, the processes have 
become more and more complex, and this calls for a much tighter process control than before. 
The faults in the manufacturing processes must be detected with precision to reduce the loss in 
manufacturing. Semiconductor equipment data has been shown to be helpful for the detection of 
any abnormal variation in the process. This is because any fault occurring during the process 
appears as some variation in the equipment tool data collected for that process. 

There has been active research conducted in the fault detection area by applying different 
statistical techniques to the tool data. Neural networks have been one of the most researched 
techniques for the purpose [1-3]. Principal component analysis (PCA) and its variants have been 
widely employed as well [4,5]. Control charts have also been used for simultaneous fault 
detection and classification [6]. The use of autoregressive moving average based time series 
modeling techniques have also been shown to be quite useful in this regard [7,8]. These works 
have shown that the analysis of tool data gives greater insight into the process variations and can 
be used to detect abnormalities in the process. 

In this research, the seasonal autoregressive integrated moving average (SARIMA) time series 
models are investigated for the detection of faults in etch tool data. The derivative dynamic time 
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warping (DDTW) algorithm was employed to synchronize the data before the modeling step. 
The rest of the paper has been divided into three sections. Section 2 gives details about data 
collection, preprocessing, and synchronization. Section 3 provides a theoretical overview of 
SARIMA models. Section 4 explains the implementation of the technique and the results are 
discussed in Section 5. 

 
 

2. SEMICONDUCTOR EQUIPMENT DATA 

 
2.1 Data Preprocessing 

Two sets of experimental data from an etch process were collected. The first set consisted of 
data from 10 acceptable runs of the etch process, while the second set consisted of 10 
experimental runs. The experimental runs were composed of three acceptable runs and seven 
faulty runs. The faults were induced in the process for these seven runs. A total of eleven steps 
constituted a process run. All of the experiments were performed on an Applied Materials’ DPS-
II Centura dielectric etcher. The acquired data consisted of 55 parameters, where each parameter 
corresponded to the measurement of a specific attribute of equipment. 

 
Table 1. Types of faults induced in an experimental data set 

Run no. Fault induced 

1 None 

2 –0.5 mT from base pressure 

3 +0.5 mT from base pressure 

4 –1% MFC conversion shift 

5 +1% MFC conversion shift 

6 Source RF cable: loss simulation 

7 None 

8 Bias RF cable: power delivered 

9 None 

10 Added chamber leak by 1.3 mT/min 

MFC=mass flow controller, RF=radio frequency. 

 
Table 1 provides the description of the experimental set and the type of faults induced. Our 

goal was to successfully distinguish these faulty runs from the acceptable runs of the 
experimental set. However, not all of these parameters carry useful information. Therefore, the 
15 most important parameters were selected by incorporating PCA. The first principal 
component was observed and the parameters that correspond to the largest coefficients in the 
first component were selected. The selected parameters are listed in Table 2. Each parameter in 
the data had a separate range of values because of the difference in measurement units. As a 
necessary step before proceeding with modeling, the data normalization was performed using 
the min-max normalization technique.  
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Table 2. Selected data parameters 

Parameter Name Parameter Name 

1 Throttle gate valve current 9 RF probe phase 

2 RF source forward 10 E-chuck voltage 

3 RF matcher current 1 11 Flow splitter-flow 1 

4 RF matcher current 2 12 Flow splitter-total flow 

5 RF bias forward 13 Gas flow-12 

6 RF bias shunt 14 RF probe Vp-p 

7 RF probe voltage 15 RF probe DC bias 

8 RF probe current   

RF=radio frequency. 

 
2.2 Derivative Dynamic Time Warping 

Once the data was normalized, it was then synchronized. The need for data synchronization 
arose because the total no of observations collected from each run were unequal. Although all 
process runs followed the same steps, this mismatch appeared due to the fact that each run did 
not take exactly the same time to complete. Moreover, sometimes the delays in the data 
acquisition system also added to this misalignment of data. 

In order to synchronize the data, we incorporated the DDTW [9,10] algorithm. DDTW is a 
variation of the DTW algorithm, which has been widely used in different fields for pattern 
recognition [11]. DDTW follows the DTW algorithm except that the inputs are differentiated in 
it before further processing, which enhances the performance of synchronization. The algorithm 
compares two independent time sequences, X=(x1, x2, …, xN), having N ϵ N number of data 
samples and Y=(y1, y2, …, yM), having M ϵ N number of data samples and finds the right 
alignment between the two by warping them. The process involves the construction of an N×M 
local cost matrix C, where each element is Ci,j=d(Xi,Yj). The distance function d finds the 
Euclidian distance (Xi –Yj)

2 between the points Xi and Yj.  
 

 
 

Fig. 1. The warping path and the alignment it returned for two sample time series X and Y with 
the unequal lengths of N=53 and M=65, respectively. 
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This matrix generates an alignment cost map of the two sequences. To find the right 
alignment, a path consisting of a set of coordinates across the map is computed, which is called 
the warping path W. Fig. 1 shows a DTW warping path as an example for two sample time 
sequences of X and Y. 

The warping path defines a mapping between X and Y, 
 

W = w1, w2,…,wk ,…, wK         max(M,N) ≤ K < M+N-1            (1) 

 
The warping path must satisfy the following conditions: 
 

1) boundary conditions: w1=(1,1) and wK=(M,N) 
2) continuity condition: for any wk=(a,b) and wk-1=(a’,b’), a-a’≤1 and b-b’≤1 
3) monotonicity condition: for any wk=(a,b) and wk-1=(a’,b’), a-a’≥0 and b-b’≥0 

 
There could be numerous paths that satisfy the above conditions, but there is a cost associated 

with each path and we are interested in the path with the lowest cost, which is called the optimal 
warping path. 

 
i.e., 

   DTWሺX, Yሻ = 	min ൝ට∑ ୵୩ౡేసభ୏ ൡ,                                 (2) 

This can be found by using the dynamic programming based algorithm, which involves 
constructing the global cost matrix D, defined as [10]: 

 
First row:  D1, j = 	∑ 	௝௞ୀଵ C1, k,  j ϵ [1, M] 

First column:  D i, 1 = 	∑ 	௜௞ୀଵ C k, 1,  i ϵ [1, N] 

 
All other elements: Di,j = min {Di-1,j-1,Di-1,jDi,j-1}+Ci,j, where i ϵ [1, N], j ϵ [1, M] 
 
After calculating the global cost matrix, the optimal warping path can be computed by 

tracking the path starting from DN,M and by following the elements corresponding to the lowest 
cost at each step and then ending at D1,1. This path defines the alignment between the two 
sequences and can be used to create synchronized time sequences. 

There are many modifications that have been made to DTW algorithm since its development, 
but all of them can be divided into two categories: symmetric and asymmetric [12]. Symmetric 
DTW algorithms give equal importance to both the input time sequence in such a way that the 
optimal path goes through all the points of both and hence results in two equal, synchronized 
time sequences. However, the total data samples of each of the synchronized sequences are 
greater than those before synchronization. 

On the contrary, asymmetric DTW algorithms prefer one of the two input in such a way that 
the optimal path goes through all the points of the preferred sequence. However, it may skip 
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some of the points in the other input sequence. However, this results in synchronized sequences 
whose total data samples are equal to those of the preferred input sequence. Kassidas et al. [12] 
demonstrated the use of DTW for the synchronization of batch trajectories by combining both 
symmetric and asymmetric DTW algorithms. A variation of this methodology was used in this 
research. A run was fixed as the reference, and observations of all other runs from both data sets 
were synchronized with those of that run. In this way the number of observations for each of the 
runs was made equivalent to the number of observations of a reference run (2,411 observations). 

 
 

3. TIME SERIES MODELING 

 
3.1 ARIMA Models 

ARIMA models combine the autoregressive (AR) and moving-average (MA) models to form 
a time series model. The general equation for an AR model is: 

  
xt = et + ф1xt-1 + ф2xt-2 + … + фpxt-p                      (3) 

 
where xt is the value of a time series at time t, ф1, ф2,…, фp are the autoregressive coefficients, 

and et is the white noise error term at time t [13]. As evident from Eq. (1), the AR model 
expresses the current value of the time series in terms of p regressed past values of the series, 
where p is called the order of the AR model. Similarly a MA model has the general equation of: 

 
xt = et + θ1et-1 + θ2et-2 + … + θqet-q                        (4) 

  
where xt is the value of a time series at time t, θ1, θ2,…, θq are the moving average coefficients, 

and et is the white noise error term at time t [13]. Unlike AR models, MA models express the 
current value of time series in terms of q regressed past innovations of the series, where q is 
called the order of the MA model. The AR and MA models are both combined to form the 
ARMA model [13], which has the equation: 

 
xt = et + ф1xt-1 + ф2xt-2 + … + фpxt-p + et +θ1et-1 + θ2et-2 + … + θqet-q .          (5) 

 
ARMA models are used for stationary time series. However, real life time series are usually 

non-stationary and hence, prior to applying the autoregressive moving average model on such 
data, this non-stationary must be removed by differencing the series d times. For example, 
differencing a time series d=1 can be defined as xt

d=1= xt–xt-1. An ARMA model with this 
differencing step added to it is termed as the ARIMA model. It is denoted by ARIMA(p,d,q), 
which summarizes the number of each of the three parameters, p, d, and q, that are necessary to 
define it. The general equation for ARIMA model can be written as:  

 
xd

t = et + ф1x
d
t-1 + ф2x

d
t-2 + … + фpx

d
t-p + et +θ1et-1 + θ2et-2 + … + θqet-q .        (6) 

 
An alternate and more flexible general notation for the ARIMA model using the backshift 

notation B is: 
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Ф(B) (1-B)d xt = Θ(B) et                         (7) 
 

where 
 

Ф(B) = (1 - ф1B - ф2B
2 - ... - фpB

p) 
 

Θ(B) = (1 + θ1B + θ2B
2 + ... + θqB

q). 
 

3.2 Seasonal ARIMA Models 

A time series that contains repeated patterns in its data after specific period S, is said to have a 
seasonal behavior. A non-seasonal ARIMA model as presented in the last section, cannot model 
this kind of series. Therefore, an extension of ARIMA models, which are called SARIMA 
models, are used. In addition to the three parameters for defining an ARIMA model, the 
SARIMA model incorporates four more parameters in order to cope with the seasonal 
components of the series. These parameters are defined in the notation, 
SARIMA(p,d,q)(P,D,Q)s, where p is the non-seasonal AR order, d is the non-seasonal 
differencing, q is the non-seasonal MA order, P is the seasonal AR order, D is the seasonal 
differencing, Q is the seasonal MA order, and S is the repeating seasonal pattern period [14,15]. 
The general equation for SARIMA model is: 

 
Ф(B) Фs(B

s) (1-B)d(1-Bs)D xt = Θ(B) Θs(B
s) et                  (8) 

 
where 

 
Ф(B) = (1 - ф1B - ф2B

2 - ... - фpB
p) 

 
Фs(B

s) = (1 - фs1B
s - фs2B

2s - ... - фspB
ps) 

 
Θ(B) = (1 + θ1B + θ2B

2 + ... + θqB
q) 

 
Θs(B

s) = (1 + θs1B
s + θs2B

2s + ... + θsqB
qs). 

 
Table 3. Using the autocorrelation function (ACF) and partial-autocorrelation (PACF) to identify 

ARMA(p,q)  

 AR(p) MA(q) ARMA(p,q) 

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 

AR=autoregressive, MA=moving-average. 

 
SARIMA models are widely used for the modeling and forecasting of seasonal data. In order 

to apply and use them, the following general steps are involved 
 
Step 1. Identification: In this step the values of the parameters p, d, q, P, D, Q, and S are 

identified using the autocorrelation and partial-autocorrelation of the time series. The 
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process can be summarized as shown in Table 3 [13]. 
Step 2. Estimation: All the coefficients of the model specified in the first step are then estimated in 

this step. If the model performance is not adequate, the process is restarted from Step 1. 
Step 3. Forecasting: The model is used to generate future forecasts. 
 
 

4. IMPLEMENTATION 

In order to apply the SARIMA model, the three-step methodology previously explained was 
followed. The healthy data set was used for developing the model. As for each parameter of the 
data being a separate time series, a separate model was developed, making the total number of 
models equal to fifteen.  

 

 
Fig. 2. Compiled sequence for parameter no. 8. 

 
For each parameter, a sequence of time series of that parameter from each run was compiled 

together. So, as the pattern would repeat after every 2411 observations for each run, we found 
the seasonality parameter for the SARIMA model to be S=2411. Fig. 2 shows the compiled 
series for parameter no. 8, which contains the data from all ten runs of the healthy data set.  

The first step is the identification of model parameters for defining the SARIMA model. This 
involves the use of the autocorrelation and partial-autocorrelation plots of the given series. The 
high value of initial lags in an autocorrelation plots suggests the need for differencing. The 
autocorrelation plot for the parameter no. 8 is given in Fig. 3, before and after the differencing of 
d=1. The rest of the parameters are identified using the autocorrelation and partial-
autocorrelation plots of the differenced time series using the criteria mentioned in Table 3. For 
example, for the case of parameter no. 8, the plots are given in Fig. 4. The plots suggest a 
SARIMA (0,1,1,0,1,1)2411

 model for this particular parameter.  
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Fig. 3. Autocorrelation plots for parameter no. 8 before and after differencing.  

 

 
Fig. 4. Sample autocorrelation and partial autocorrelation for parameter no. 8.  
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For checking the performance of the model, the model was estimated (i.e., all of the 
coefficients of the model were estimated). The values of the estimated coefficients, standard 
error, and t-statistic were then observed. For a good model, the value of the coefficients should 
be statistically significant. Also, a low value of standard errors and the resulting high value of t-
statistic indicate that the model is adequate for the modeled time series. If that turns out to not be 
the case, the model is reselected.  

 
Table 4. Selected models for each of the data parameters 

Parameter SARIMA(p,d,q,P,D,Q)s Parameter SARIMA(p,d,q,P,D,Q)s 

1 SARIMA(4,1,1,0,1,1)2411 9 SARIMA(0,1,1,0,1,1)2411 

2 SARIMA(0,1,4,0,1,1)2411 10 SARIMA(0,1,1,0,1,1)2411 

3 SARIMA(0,1,6,0,1,1)2411 11 SARIMA(0,1,2,0,1,1)2411 

4 SARIMA(1,1,1,0,1,1)2411 12 SARIMA(0,1,2,0,1,1)2411 

5 SARIMA(1,1,1,0,1,1)2411 13 SARIMA(0,1,2,0,1,1)2411 

6 SARIMA(0,1,3,0,1,1)2411 14 SARIMA(0,1,1,0,1,1)2411 

7 SARIMA(2,1,4,0,1,1)2411 15 SARIMA(0,1,1,0,1,1)2411 

8 SARIMA(6,1,1,0,1,1)2411   

SARIMA=seasonal autoregressive integrated moving average. 

 
This procedure was followed for all parameters of the data and the selected models are 

summarized in Table 4. The established model gave us the fully specified model, which was 
ready for forecasting. In this step, the model is then used to forecast the next run using its 
mathematical equation, which uses the data from the healthy runs for the past values of the 
series.  

 

 
Fig. 5. Original and forecasted series for parameter no. 8 of experimental Run no. 10. 
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For each run in the experimental data set, the original series of all of the parameters were 
compared with the forecasted series for the corresponding parameters. Fig. 5 shows the 
comparison for parameter no. 8 in Run no. 10 of the experimental data set. The comparison 
yielded the root mean squared error (RMSE) for each parameter of each run. These results are 
summarized in Table 5. This table shows how much a parameter in each run varies from the 
model we developed for that parameter. 

 
Table 5. Parameter-wise root mean squared error results for each run 

RUN1 RUN2 RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9 RUN10 

Par1 0.0070 0.0084 0.0076 0.0088 0.0101 0.0075 0.0078 0.0082 0.0106 0.0095 
Par2 0.0376 0.0639 0.0316 0.0562 0.0398 0.0467 0.0598 0.0432 0.0359 0.0578 
Par3 0.0611 0.0582 0.0538 0.0595 0.0566 0.0574 0.0582 0.0492 0.0610 0.0567 
Par4 0.0605 0.0572 0.0554 0.0580 0.0556 0.0614 0.0570 0.0483 0.0609 0.0571 
Par5 0.0443 0.0407 0.0335 0.0405 0.0383 0.0362 0.0569 0.0316 0.0441 0.0457 
Par6 0.0279 0.0180 0.0283 0.0183 0.0269 0.0511 0.0461 0.0255 0.0196 0.0266 
Par7 0.0279 0.0362 0.0317 0.0285 0.0262 0.0396 0.0338 0.0350 0.0320 0.0358 
Par8 0.0166 0.0225 0.0247 0.0240 0.0236 0.0386 0.0237 0.0191 0.0156 0.0238 
Par9 0.0362 0.0478 0.0528 0.0407 0.0404 0.0800 0.0511 0.0597 0.0384 0.0543 
Par10 0.0244 0.0202 0.0167 0.0124 0.0151 0.0097 0.0183 0.0171 0.0144 0.0179 
Par11 0.0154 0.0105 0.0219 0.0197 0.0103 0.0219 0.0253 0.0170 0.0154 0.0132 
Par12 0.0180 0.0122 0.0237 0.0225 0.0104 0.0237 0.0278 0.0194 0.0178 0.0157 
Par13 0.0070 0.0068 0.0153 0.0070 0.0070 0.0154 0.0154 0.0069 0.0070 0.0068 
Par14 0.0300 0.0429 0.0403 0.0364 0.0324 0.0294 0.0449 0.0664 0.0342 0.0416 
Par15 0.0321 0.0460 0.0433 0.0389 0.0345 0.0295 0.0478 0.0756 0.0351 0.0465 

 

 
Fig. 6. The combined parameter-wise root mean squared error (RMSE) for each run. 
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In order to visualize the amount of errors in each run, the combined RMSE of each run was 
calculated as represented in Fig. 6. This can be used to quantify the amount of errors parameter-
wise. However, in order to compare the runs from the perspective of errors in each of the eleven 
steps of the process, the step-wise RMSE was also presented in Table 6. This was done by 
comparing the forecasted series for each step of a parameter with the actual step in the original 
series of that parameter. This gives us insight into fault detection from another important 
perspective. The summary of the results for each run using this technique, which was done by 
calculating the combined stepwise RMSE for each run, is given in Fig. 7. 

 
Table 6. Step-wise root mean squared error results for each run 

RUN1 RUN2 RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9 RUN10 

Step1 0.0130 0.0067 0.0067 0.0127 0.0102 0.0064 0.0138 0.0142 0.0127 0.0117 

Step2 0.0440 0.0384 0.0253 0.0306 0.0316 0.0249 0.0511 0.0307 0.0366 0.0408 

Step3 0.0169 0.0154 0.0157 0.0159 0.0151 0.0278 0.0183 0.0242 0.0130 0.0142 

Step4 0.0396 0.0487 0.0299 0.0466 0.0389 0.0332 0.0355 0.0199 0.0389 0.0379 

Step5 0.0226 0.0245 0.0332 0.0303 0.0291 0.0353 0.0297 0.0382 0.0305 0.0254 

Step6 0.0131 0.0148 0.0151 0.0157 0.0149 0.0335 0.0151 0.0234 0.0120 0.0162 

Step7 0.0308 0.0470 0.0421 0.0466 0.0464 0.0396 0.0451 0.0437 0.0294 0.0480 

Step8 0.0049 0.0047 0.0050 0.0065 0.0047 0.0050 0.0055 0.0051 0.0049 0.0050 

Step9 0.0260 0.0286 0.0304 0.0265 0.0214 0.0353 0.0320 0.0310 0.0246 0.0346 

Step10 0.0119 0.0144 0.0151 0.0172 0.0133 0.0282 0.0145 0.0215 0.0133 0.0167 

Step11 0.0354 0.0501 0.0569 0.0482 0.0386 0.0465 0.0611 0.0425 0.0416 0.0448 

 

 
Fig. 7. The combined step-wise root mean squared error (RMSE) for each run. 
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5. RESULTS AND DISCUSSION 

Observing the results summarized in chart in Fig. 6, except for Runs no. 5 and 7, all others 
came up with the expected results. Runs no. 1 and 9 were not induced with any fault, so they 
resulted in with very small errors. Similarly Runs no. 2–4, 6, 8, and 10 were the perturbed runs 
and clearly, they have been distinguished from the acceptable runs by resulting in a comparably 
higher error value. The exceptions were Runs no. 5 and 7, which returned with opposite results. 
Run no. 5 should have been detected with a large amount of error, while Run no. 7 should have 
had a small amount of error, but the results show otherwise. Since this technique resulted in 
eight successful detections, one missed detection and one false alarm; we can say that it can 
distinguish the faulty runs from the healthy runs with an accuracy of 80% by using the following 
equation for classification accuracy.  

   (9) 

The second technique in which we calculated the step-wise error, as shown in Fig. 7, 
performed slightly better than the first one. Just like before, the acceptable Runs no. 1 and 9 
showed the least amount of error. The fault-induced Runs no. 2-4, 6, 8, and 10 resulted in 
relatively higher error values. Similar to the first technique, Run no. 7 again came up with 
results that were contrary to expectations. Hence, we could argue that although there were no 
faults intentionally induced in Run no. 7, a fault might have occurred during the process of this 
run, which resulted in a high amount of error. However, unlike in the previous technique, the 
amount of error in Run no. 5 in these results was greater than the error in acceptable Runs no. 1 
and 9. Considering this to be a near successful detection, we could use Eq. (9) to find the 
accuracy for this technique, which equaled 90%. A possible explanation for these slightly 
improved results might be that the faults induced in the process have an active effect on the data 
only for specific steps. Analyzing the error parameter-wise by combining the errors for the 
whole series of steps ended up in effectively blurring the error variance between individual steps.  

It can be noticed in both charts for the combined parameter-wise and step-wise errors in the 
runs that the difference between the error values between the runs is very small. This is because 
the faults that were induced in the faulty experimental runs consisted of very little variation for 
evaluating the performance of the fault detection technique in detecting even the slightest of 
faults. Therefore, this small variation resulted in a very small difference existing between the 
faulty and acceptable runs. 

It can be concluded that using SARIMA models can be useful for the detection of faults in 
semiconductor equipment data. By an improved selection of models, the presented technique 
could give even better results.  
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