• Title/Summary/Keyword: Semiconducting Materials

Search Result 211, Processing Time 0.03 seconds

CO sensing Properties of $SnO_{2}$ fine particles ($SnO_{2}$ 초미세 입자의 CO 감지 특성)

  • Park, Jin-Seoung;Park, Bo-Seok;Noh, Whyo-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.55-61
    • /
    • 2002
  • Ultra-fine particles of $SnO_{2}$ was synthersized by the sol-gel powder processing using tin(II) chloride dihydrate$(SnCl_{2}{\cdot}2H_{2}O)$ and ethanol$(C_{2}H_{5}OH)$ as raw materials. Gel powders can be obtained by drying of sol at $120^{\circ}C$ after aging 72hrs and 168hrs. The amount of $SnO_{2}$ phase was increased with temperature because of the evaporation of volatile components, and the creation of $SnO_{2}$ phase was almost done by the heat treatment at $700^{\circ}C/30min$ The grain sizes after firing are about 20-30nm, and it showed the narrow distribution of grain size. The specimens to measure electrical properties were fabricated by the thick film screen printing technique on the alumina substrates. The conductance of $SnO_{2}$ was increased with temperature up to $380^{\circ}C$ by the typical conduction mechanism of semiconducting ceramics. There was a region of constant conductance between about $200^{\circ}C$ and $380^{\circ}C$ due to the increment of electron concentration with temperature and the annihilation of conduction carriers by the absorption and electron trapped-ionization of oxygen on the surface of $SnO_{2}$, It was finally showed the intrinsic behaviors above $450^{\circ}C$. The sensing properties of response time, recovery, and sensitivity of CO were improved with aging time.

  • PDF

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • Bae, Yeong-Suk;Kim, Yeong-Lee;Kim, Dong-Chan;Gong, Bo-Hyeon;An, Cheol-Hyeon;Choe, Mi-Gyeong;U, Chang-Ho;Han, Won-Seok;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer (Phenylene-Thiophene-Thieno[3,4-b]pyrazine 올리고머의 합성과 특성)

  • Hwang, Mi-Lim;Li, Ji-Cheng;Seo, Eun-Ok;Lee, Soo-Hyoung;Lee, Youn-Sik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.95-100
    • /
    • 2011
  • During the development of low band-gap organic materials(p-type semiconducting organic compounds) for organic solar cells, an oligomer consisting of 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT), and 2,3-dimethylthieno[ 3,4-b]pyrazine(TP) as repeat units, oligo(OP-HT-TP), was synthesized. The oligomer was amorphous in nature in the temperature range studied, and well soluble in common organic solvents such as chloroform. The maximum absorption wavelength was 716 nm in solid state. The band-gap and HOMO/LUMO energy levels of oligo(OP-HT-TP) were measured to be 1.20 eV and -5.27/4.04 eV, respectively. However, the absorbance of the oligomer at maximum absorption wavelength was less than one fifth of that of poly(3-hexylthiophene) which has been most frequently used in fabrication of organic solar cells.

Magnetic and CMR Properties of Sulphospinel ZnxFe1-xCr2S4 (Spinel계 유화물 ZnxFe1-xCr2S4의 CMR 특성과 자기적 성질)

  • Park, Jae-Yun;Bak, Yong-Hwan;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • The CMR properties and magnetic properties of sulphospinels $Zn_xFe_{1-x}Cr_2S_4$ have been explored by X-ray diffraction, magnetoresistance measurement, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures in the range of x=0.05, 0.1, 0.2 are cubic at room temperature. Magnetoresistance measurement indicates that these system is semiconducting below about 160 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The Zn substitutions for Fe occur to increase the Jahn-Teller relaxation and the electric quadrupole shift. CMR properties could be explained with Jahn-Teller effect, and half-metallic electronic structure, which is different from both the double exchange interactions of manganite La-Ca-Mn-O system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn) (Chalcogenide Fe0.9M0.1Cr2S4(M=Co, Ni, Zn)의 자기저항에 관한 Mössbauer 분광연구)

  • Park, Jae Yun;Lee, Byoung-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Photocurrent Characteristics of ZnO Nanoparticles (ZnO 나노입자의 광전류 특성)

  • Jun, Jin-Hyung;Seong, Ho-Jun;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.207-207
    • /
    • 2008
  • ZnO is one of the widely utilized n-type semiconducting oxide materials in the field of optoelectronic devices. For its application to the fabrication of promising ultraviolet (UV) photodetectors, ZnO with various structures has been extensively studied. However, study on the photodetectors using zero-dimensional (0-D) ZnO nanoparticle is scarce while the 0-D nanoparticle structure has many advantages compared to the other dimensional structures for absorption of light. In this study, the photocurrent characteristics of ZnO nanoparticles were investigated through a simply pasting of the nanoparticles across the pre-patterned electrodes. Then the photoluminescence (PL) characteristic, photocurrent response spectrum, photo- and dark-current and photoresponse spectrum were investigated with a He-Cd laser and an Xe lamp. An dominant PL peak of the ZnO nanoparticles was located at the wavelength of 380 nm under the illumination of 325-nm wavelength light. The ratio of photocurrent to dark current (on/off ratio) is as high as 106 which is considerable value for promising photodetectors. On the other hand, the time constants in photoresponse were relatively slow. The reasons of the high on/off ratio and relatively slow photoresponse characteristic will be discussed.

  • PDF

Mossbauer Spectroscopic Study of La2-2xSr2xCu1-xFexO4-y(0≤x≤0.5) Solid-solution

  • Park, Jung-Chul;Byeon, Song-Ho;Kim, Don;Lee, Choong-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.97-100
    • /
    • 2004
  • Tetragonal $K_2NiF_4$-type $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ solid-solution have been synthesized by citrate based sol-gel method. The valence state of iron was determined by Mossbauer spectroscopy and subsequent iodometric titration clearly showed that the copper ions in this solid-solution are in the mixed valence state Cu(II/III). When x ${\geq}$ 0.3, Fe(III) is competing with the mixture of Cu(II) and Cu(III) and $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ exhibits a metallic character. No evidence for Cu(II)-O-Fe(IV) ${\leftrightarrow}$ Cu(III)-O-Fe(III) valence degeneracy was observed. In contrast, a small amount of Fe(IV) is observed with increasing x (x = 0.4 and 0.5), revealing a semiconducting behavior. These results suggest that the electronic interaction of Cu(III)-O-Fe(III) contributes greatly to the metallic character, while the electronic interaction of Cu(II)-O-Fe(IV) deteriorates the metallic character of $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$.

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering (인장변형에 따른 이차원 수평접합 쇼트키 장벽 제일원리 연구)

  • Hwang, Hwihyeon;Lee, Jaekwang
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1288-1292
    • /
    • 2018
  • Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구)

  • Choi, Giheon;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2020
  • We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.

The role of grain boundary modifier in $BaTiO_3$ system for PTCR device ($BaTiO_3$계 PTC 재료에서 입계 modifier의 역할)

  • Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.553-561
    • /
    • 1993
  • In this study, thr effect of $Bi_2O_3$ and BN addition as grain boundary modifiers on sintering and electrical properties of semiconducting PTCR(Positive Temperature Coefficient of Resistivity) mate rial were analyzed using TMA, XRD and Complex Impedance Spectroscopy method. Bismut.h Ox~de and Boron Nitride were added to Y-doped $BaTiO_3$ respectively. Bismuth sesquioxide up to O.lmol%solubil~ ty limit of $Bi_2O_3$ in Y--$BaTiO_3$ ceramics-retarded densification and grain growth, and further addition mitigated these retardation effects. The resistivity at room temperature increased with increasing amount of $Bi_2O_3$ and thus decreased the PTCR effect, probably due to the $Bi_2O_3$ segregation on the grain boundaries. From the complex ~mpedance pattern, it is known that the grain boundary resisitivity is dominant on the whole resistivity of sample. In the result of applying the defect chemistry, $Bi^{3+} \;and \; Bi^[5+}$ are substituted for Ua and Ti site, respectively. Boron nitride decomposed and formed liquid phase among the $BaTiO_3$ grains. The decomposed com~ ponents made the second phase and existed the tr~ple juntion from the result of EPMA. From the complex impendencc pattern, the gram and grain boundary resistivity were small. The grain size increased with increasing BN contents, and decreased grain boundary resistivity enhanced the PTCR effect.

  • PDF