Browse > Article
http://dx.doi.org/10.4283/JKMS.2013.23.2.043

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn)  

Park, Jae Yun (Dept. of Materials Science and Engineering, Incheon National University)
Lee, Byoung-Seob (ECR Ion Source/Compact Linear Accelerator Group, Korea Basic Science Institute Busan Center)
Abstract
The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.
Keywords
M$\ddot{o}$ssbauer; CMR; chalcogenide; polaron; Jahn-Teller; spinel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김삼진, 박승일, 김철성, 새물리 41, 385 (2000).
2 Z. Klencsar, E. Kuzmann, Z. Homonnay, A. Vertes, A. Simopoulos, E. Devlin, and G. Kallias, J. Phys. Chem. Solids 64, 325 (2003).   DOI   ScienceOn
3 O. Muller and R. Hoy, The Major Ternary Structural Families, Springer-Verlag, New York (1974).
4 R. D. Shannon, Acta Crystallogr., Sect. A32, 751 (1976).
5 H. Kondo, J. Phys. Soc. Japan 41, 1247 (1976).   DOI
6 F. K. Lotgering, J. Phys. Chem. Solids 29, 2193 (1968).   DOI   ScienceOn
7 B. Boucher, R. Buhl, and M. Perrin, Acata Crystallogr., Sect. B25, 2326 (1969).
8 M. Mejai and M. Nogues, J. Magn. Magn. Mater. 15, 487 (1980).
9 Z. Yang, S. Tan, Z. Chen, and Y. Zang, Phys. Rev. B 62 13872 (2000).   DOI   ScienceOn
10 S. Jin, T. H. Tiefel, M. McCormick, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).   DOI   ScienceOn
11 B. Raveau. A. Maignan, C. Martin, and M. Hervieu, Chem. Mater. 10, 2641 (1998).   DOI   ScienceOn
12 G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950).   DOI   ScienceOn
13 R. von Helmholt, J. Wecker, B. Holzafel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).   DOI   ScienceOn
14 R. M. Kusters, J. Singleton, D. A. Keen, R. L. McGreevy, and W. Hayes, Physica B 155, 362 (1989).   DOI   ScienceOn
15 A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997).   DOI   ScienceOn
16 L. Brossard, J. L. Dormann, L. Goldstein, P. Gibart, and P. Renaudin, Phys. Rev. B 20, 2933 (1979).   DOI
17 M. Eibschutz, S. Shtrikman, and Y. Tenenbaum, Phys. Lett. 24A, 563 (1967).
18 G. R. Hoy and K.P. Singh, Phys. Rev. 172, 514 (1968).   DOI
19 C. S. Kim, D. Y. Kim, H. M. Ko, J. K. Kim, and J. Y. Park, J. Appl. Phys. 73, 6986 (1993).   DOI   ScienceOn
20 G. Haacke and A. J. Nozik, Solid State Commun. 6, 363 (1968).   DOI   ScienceOn
21 C. M. Yagnik and H. B. Mathur, Solid State Commun. 5, 841 (1967).   DOI   ScienceOn
22 박민식, 윤석주, 민병일, 한국자기학회지 8, 111 (1998).