DOI QR코드

DOI QR Code

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering

인장변형에 따른 이차원 수평접합 쇼트키 장벽 제일원리 연구

  • Received : 2018.11.06
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.

반도체 특성을 가지는 이차원 전이금속 칼코겐 화합물 $MoS_2$와 강자성이면서 금속성을 가지는 $VS_2$로 이루어진 수평접합 구조를 기반으로 해서, 0%부터 10%까지 2% 간격으로 변형에 따른 쇼트키 장벽(Schottky Barrier) 변화를 밀도 범함수 이론 계산을 통해 연구하였다. 그 결과, 홀의 쇼트키 장벽이 전자의 쇼트키 장벽에 비해 훨씬 작고, 홀의 쇼트키 장벽 높이가 변형에 따라 선형적으로 감소함을 발견하였다. 특히, 8% 이후의 변형에서 홀의 스핀 업 쇼트키 장벽의 높이가 0에 가까워지는 임계 변형값이 존재함을 발견하였고, 이 임계 변형값 이상에서는 스핀 업 성분의 홀이 $MoS_2/VS_2$ 수평접합구조를 통해 쇼트키 장벽 없이 쉽게 흐르게 됨을 알게 되었다. 이러한 연구 결과는 향후, 변형을 통한 이차원 전이금속 칼코겐 수평 접합구조 기반 소자 특성 최적화에 중요한 기초자료로 이용될 것으로 기대한다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). https://doi.org/10.1038/nature12385
  2. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
  3. W. Yao, E. Wang, K. Deng, S. Yang and W. Wu et al., Phys. Rev. B 92, 115421 (2015). https://doi.org/10.1103/PhysRevB.92.115421
  4. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan and J. van den Brink et al., Phys. Rev. Lett. 101, 026803 (2008). https://doi.org/10.1103/PhysRevLett.101.026803
  5. Q. Wang, R. Pang and X. Shi, J. Phys. Chem. C 119, 22534 (2015). https://doi.org/10.1021/acs.jpcc.5b06842
  6. I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina and M. V. Filianina et al., Phys. Rev. B 90, 235431 (2014). https://doi.org/10.1103/PhysRevB.90.235431
  7. P. Zeller and S. Gunther, New J. Phys. 16, 083028 (2014). https://doi.org/10.1088/1367-2630/16/8/083028
  8. J. Lee, J. Huang, B. G. Sumpter and M. Yoon, 2D Mater. 4, 021016 (2017). https://doi.org/10.1088/2053-1583/aa5542
  9. A. Pant, Z. Mutlu, D. Wickramaratne, H. Cai and R. K. Lake et al., Nanoscale 8, 3870 (2016). https://doi.org/10.1039/C5NR08982D
  10. J. Park, J. Lee, L. Liu, K. W. Clark and C. Durand et al., Nat. Commun. 5, 5403 (2014). https://doi.org/10.1038/ncomms6403
  11. Y. Gong, J. Lin, X. Wang, G. Shi and S. Lei et al., Nat. Mater. 13, 1135 (2014). https://doi.org/10.1038/nmat4091
  12. X. Guo, G. Yang, J. Zhang and X. Xu, AIP Adv. 5, 097174 (2015). https://doi.org/10.1063/1.4932040
  13. S. Bertolazzi, J. Brivio and A. Kis, ACS Nano 5, 9703 (2011). https://doi.org/10.1021/nn203879f
  14. R. T. Tung, Appl. Phys. Rev. 1, 011304 (2014). https://doi.org/10.1063/1.4858400
  15. S. Kang, S. Jeon, S. Kim, D. Seol and H. Yang et al., ACS Appl. Mater. Interfaces 10, 27424 (2018). https://doi.org/10.1021/acsami.8b06325
  16. M. A. Bissett, M. Tsuji and H. Ago, Phys. Chem. Chem. Phys. 16, 11124 (2014). https://doi.org/10.1039/C3CP55443K
  17. H. Rostami, R. Roldan, E. Cappelluti, R. Asgari and F. Guinea, Phys. Rev. B 92, 195402 (2015). https://doi.org/10.1103/PhysRevB.92.195402
  18. Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan and J. Hao et al., ACS Nano 7, 7126 (2013). https://doi.org/10.1021/nn4024834
  19. D. Gao, Q. Xue, X. Mao, W. Wang and Q. Xu et al., J. Mater. Chem. C 1, 5909 (2013). https://doi.org/10.1039/c3tc31233j
  20. J. Feng, X. Qian, C.-W. Huang and J. Li, Nat. Photonics 6, 866 (2012). https://doi.org/10.1038/nphoton.2012.285
  21. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  22. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  23. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  24. K.-A. N. Duerloo, Y. Li and E. J. Reed, Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
  25. B. Ouyang, G. Q. Lan, Y. S. Guo, Z. T. Mi and J. Song, Appl. Phys. Lett. 107, 191903 (2015). https://doi.org/10.1063/1.4934836
  26. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang and Y.-H. Lee, Nano Lett. 15, 410 (2015). https://doi.org/10.1021/nl503744f