Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1288

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering  

Hwang, Hwihyeon (Department of Physics, Pusan National University)
Lee, Jaekwang (Department of Physics, Pusan National University)
Abstract
Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.
Keywords
Two-dimensional materials; Schottky barrier; Tensile strain; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).   DOI
2 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).   DOI
3 W. Yao, E. Wang, K. Deng, S. Yang and W. Wu et al., Phys. Rev. B 92, 115421 (2015).   DOI
4 G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan and J. van den Brink et al., Phys. Rev. Lett. 101, 026803 (2008).   DOI
5 Q. Wang, R. Pang and X. Shi, J. Phys. Chem. C 119, 22534 (2015).   DOI
6 I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina and M. V. Filianina et al., Phys. Rev. B 90, 235431 (2014).   DOI
7 P. Zeller and S. Gunther, New J. Phys. 16, 083028 (2014).   DOI
8 J. Lee, J. Huang, B. G. Sumpter and M. Yoon, 2D Mater. 4, 021016 (2017).   DOI
9 A. Pant, Z. Mutlu, D. Wickramaratne, H. Cai and R. K. Lake et al., Nanoscale 8, 3870 (2016).   DOI
10 J. Park, J. Lee, L. Liu, K. W. Clark and C. Durand et al., Nat. Commun. 5, 5403 (2014).   DOI
11 Y. Gong, J. Lin, X. Wang, G. Shi and S. Lei et al., Nat. Mater. 13, 1135 (2014).   DOI
12 X. Guo, G. Yang, J. Zhang and X. Xu, AIP Adv. 5, 097174 (2015).   DOI
13 S. Bertolazzi, J. Brivio and A. Kis, ACS Nano 5, 9703 (2011).   DOI
14 R. T. Tung, Appl. Phys. Rev. 1, 011304 (2014).   DOI
15 S. Kang, S. Jeon, S. Kim, D. Seol and H. Yang et al., ACS Appl. Mater. Interfaces 10, 27424 (2018).   DOI
16 M. A. Bissett, M. Tsuji and H. Ago, Phys. Chem. Chem. Phys. 16, 11124 (2014).   DOI
17 H. Rostami, R. Roldan, E. Cappelluti, R. Asgari and F. Guinea, Phys. Rev. B 92, 195402 (2015).   DOI
18 Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan and J. Hao et al., ACS Nano 7, 7126 (2013).   DOI
19 D. Gao, Q. Xue, X. Mao, W. Wang and Q. Xu et al., J. Mater. Chem. C 1, 5909 (2013).   DOI
20 J. Feng, X. Qian, C.-W. Huang and J. Li, Nat. Photonics 6, 866 (2012).   DOI
21 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).   DOI
22 X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang and Y.-H. Lee, Nano Lett. 15, 410 (2015).   DOI
23 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI
24 K.-A. N. Duerloo, Y. Li and E. J. Reed, Nat. Commun. 5, 4214 (2014).   DOI
25 B. Ouyang, G. Q. Lan, Y. S. Guo, Z. T. Mi and J. Song, Appl. Phys. Lett. 107, 191903 (2015).   DOI
26 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).