• Title/Summary/Keyword: Semi-infinite element

Search Result 67, Processing Time 0.02 seconds

Stochastic FE analysis of semi-infinite domain using infinite elements (무한요소를 이용한 반무한영역의 추계론적 유한요소해석)

  • 최창근;노혁천
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.11-18
    • /
    • 1998
  • In this paper the stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is expanded to include the infinite finite elements. The semi-infinite domain can be thought as to have more uncertainties than the ordinary finite domain in material constants, which shows the needs of and the importance of the stochastic finite element analysis. The Bettess's infinite element is adopted with the theoretical decomposition of the strain matrix to calculate the deviatoric stiffness of the semi-infinite domains. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions giving the rational results which should be considered in the design of structures on semi-infinite domains.

  • PDF

Coupled Distinct Element and Boundary Element Analysis of Problems Having Infinite or Semi-infinite Boundaries (개별요소와 경계요소 조합에 의한 무한 및 반무한 영역문제의 해석)

  • Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.81-93
    • /
    • 1992
  • Numerical modeling of problems having infinite and semi-infinite boundaries is studied using a coupled method of distinct elements and boundary elements. The regions which are restricted on stress concentration area of loading points, excavation surface, and geometric discontinuity in the underground structures, are modeled using distinct elements, while the infinite and semi-infinite regions are modeled using linear boundary elements. Linear boundary elements for infinite and semi-infinite region are respectively composed using the Kelvin's and the Melan's solution, respectively. For the completeness, the boundary element method, the distinct element, and the coupled method of distinct elements and boundary elements are studied independently. The coupled method is verified and is applied to underground structures of infinite and semi-infinite regions. Through the comparison of the results, it is concluded that the coupled analysis may be used for discontinuous underground structures in the effective manner.

  • PDF

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

A research on the technique for the vibration analysis of fuid-filled, strength member embedded and semi-infinite cylindrical shell (유체 충진된 반 무한 내심형 원통셸의 진동 해석 기법 연구)

  • Ham, Il-Bae;Bae, Soo-Ryong;Jeong, Weui-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.127-134
    • /
    • 1997
  • Abstract: A technique to analyze the vibrations of internally fluid-filled, semi-infinite cylindrical shell which has strength members embedded in the shell wall under the axial static tension conditon is presented by using the characteristic wave propagation theory based on the transfer matrix calculated from the finite element matrices of a short module section, with spatial Laplace Tranform technique, and is verified by comparison with the measured results of the test performed on a real module model, and the effects of the embedded strength members on the vibrational response is calculated and discussed.

  • PDF

Stochastic Finite Element Analysis of Semi-infinite Domain by Weighted Integral Method (가중적분법에 의한 반무한영역의 추계론적 유한요소해석)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 1999
  • 추계론적 해석은 구조계 내의 해석인수에 존재하는 공간적 또는 시간적 임의성이 구조계 반응에 미치는 영향에 대한 고찰을 목적으로 한다. 확률장은 구족계 내에서 특정한 확률분포를 가지는 것으로 가정된다. 구조계 반응에 대한 이들 확률장의 영향 평가를 위하여 통계학적 추계론적 해석과 비통계학적 추계론적 해석이 사용되고 있다. 본 연구에서는 비통계학적 추계론적 해석방법 중의 하나인 가중적분법을 제안하였다. 특히 구조계의 공간적 임의성이 큰 특성을 가지고 있는 반무한영역에 대한 적용 예를 제시하고자 한다. 반무한영역의 모델링에는 무한요소를 사용하였다. 제안된 방법에 의한 해석 결과는 통계학적 방법인 몬테카를로 방법에 의한 결과와 비교되었다. 제안된 가중적분법은 자기상관함수를 사용하여 확률장을 고려하므로 무한영역의 고려에 따른 해석의 모호성을 제거할 수 있다. 제안방법과 몬테카를로 방법에 의한 결과는 상호 잘 일치하였으며 공분산 및 표준편차는 무한요소의 적용에 의하여 매우 개선된 결과를 나타내었다.

  • PDF

Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis (터널 진동해석을 위한 반무한 경계요소법의 적용)

  • 김문겸;이종우;전제성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

A Study on Absorbing Boundaries for Wave Propagation in Semi-Infinite Elastic Media (반무한 영역에서의 탄성파 진행문제를 위한 흡수경계에 관한 연구)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.451-457
    • /
    • 2000
  • In many dynamic problems such as foundation vibrations ultrasonic nondestructive evaluation and blasting analysts are confronted with the problem of wave propagation in an infinite or semi-infinite media. In order to simulate this situation by a finite analytical model provisions must be made to absorb the stress waves arriving at the boundary. Absorbing boundaries are mathematical artifacts used to prevent wave reflections at the boundaries of discrete models for infinite media under dynamic loads. An analytical study is carried out to examine the effectiveness of Lysmer-Kuhlemeyer model one of the most widely used absorbing boundaries. Validity of the absorbing boundary conditions suggested by Lymer-Kuhlemeyer is examined by adopting the solution of Ewing et al. to the problem of plane waves from a harmonic normal force on the surface of an elastic half-space. The Ewing's problem is than numerically simulated using the finite element method on a semi-circular mesh with and without absorbing boundaries which are represented by viscous dashpots. The absorption ratios are calculated by comparing the displacements at the absorbing boundaries to those at the free field without absorbing boudaries.

  • PDF

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

Study of flat punch indentation to semi-infinite body with lpartially constrained free surface by moire method (구속표면을 가지는 반무한체에 대한 평저펀치의 압입의 연구)

  • ;Kim, Dong Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.164-172
    • /
    • 1979
  • Experimental and numerical results concerning the flat punch indentation to semi-infinite body with partially constrained free surface are presented The distributions of slip line directions are predicted by Moire fringe analysis using Vinckier's method. A mumerical study is made of the same problem by finite element method and the results are compared with the experimental results. It is shown that the contour feature of possible slip line field is similar to that of well-known Prandtl indentation sloution.

Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements (반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석)

  • 김문겸;장정범;이상도;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF