• Title/Summary/Keyword: Semantic Recommendation

Search Result 79, Processing Time 0.023 seconds

A Study on Influencer Food-Content Sentiment Keyword Analysis using Semantic Network based on Social Network

  • Ryu, Gi-Hwan;Yu, Chaelin;Lee, Jun Young;Moon, Seok-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • The development of the 4th industry has increased social media, and the rise of COVID-19 has stimulated non-face-to-face services. People's consumption patterns are also changing a lot due to non-face-to-face services. In this paper, food content keywords are derived through social network-based semantic network analysis, emotions are analyzed, and keywords applied to food recommendation platforms are input. We collected food, influencer, and corona keyword analysis data through Textom. A lot of research has been done through online reviews of existing influencer content. However, there is a lack of research on keyword sentiment analysis provided by influencers rather than consumers and research perspectives. This paper uploads language and topics derived through online reviews of existing publications and subscribers, and goes beyond the limits used in marketing methods. By analyzing keywords that influencers suggest when uploading content, you can apply data that applies them to food recommendation platforms and applications.

Semantic Search and Recommendation of e-Catalog Documents through Concept Network (개념 망을 통한 전자 카탈로그의 시맨틱 검색 및 추천)

  • Lee, Jae-Won;Park, Sung-Chan;Lee, Sang-Keun;Park, Jae-Hui;Kim, Han-Joon;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.131-145
    • /
    • 2010
  • Until now, popular paradigms to provide e-catalog documents that are adapted to users' needs are keyword search or collaborative filtering based recommendation. Since users' queries are too short to represent what users want, it is hard to provide the users with e-catalog documents that are adapted to their needs(i.e., queries and preferences). Although various techniques have beenproposed to overcome this problem, they are based on index term matching. A conventional Bayesian belief network-based approach represents the users' needs and e-catalog documents with their corresponding concepts. However, since the concepts are the index terms that are extracted from the e-catalog documents, it is hard to represent relationships between concepts. In our work, we extend the conventional Bayesian belief network based approach to represent users' needs and e-catalog documents with a concept network which is derived from the Web directory. By exploiting the concept network, it is possible to search conceptually relevant e-catalog documents although they do not contain the index terms of queries. Furthermore, by computing the conceptual similarity between users, we can exploit a semantic collaborative filtering technique for recommending e-catalog documents.

A New Semantic Distance Measurement Method using TF-IDF in Linked Open Data (링크드 오픈 데이터에서 TF-IDF를 이용한 새로운 시맨틱 거리 측정 기법)

  • Cho, Jung-Gil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.89-96
    • /
    • 2020
  • Linked Data allows structured data to be published in a standard way that datasets from various domains can be interlinked. With the rapid evolution of Linked Open Data(LOD), researchers are exploiting it to solve particular problems such as semantic similarity assessment. In this paper, we propose a method, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating the Linked Data semantic distance between resources that can be used in the LOD-based recommender system. The semantic distance measurement model proposed in this paper is based on a similarity measurement that combines the LOD-based semantic distance and a new link weight using TF-IDF, which is well known in the field of information retrieval. In order to verify the effectiveness of this paper's approach, performance was evaluated in the context of an LOD-based recommendation system using mixed data of DBpedia and MovieLens. Experimental results show that the proposed method shows higher accuracy compared to other similar methods. In addition, it contributed to the improvement of the accuracy of the recommender system by expanding the range of semantic distance calculation.

Development of Apparel Coordination System Using Personalized Preference on Semantic Web (시맨틱 웹에서 개인화된 선호도를 이용한 의상 코디 시스템 개발)

  • Eun, Chae-Soo;Cho, Dong-Ju;Lee, Jung-Hyun;Jung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2007
  • Internet is a part of our common life and tremendous information is cumulated. In these trends, the personalization becomes a very important technology which could find exact information to present users. Previous personalized services use content based filtering which is able to recommend by analyzing the content and collaborative filtering which is able to recommend contents according to preference of users group. But, collaborative filtering needs the evaluation of some amount of data. Also, It cannot reflect all data of users because it recommends items based on data of some users who have similar inclination. Therefore, we need a new recommendation method which can recommend prefer items without preference data of users. In this paper, we proposed the apparel coordination system using personalized preference on the semantic web. This paper provides the results which this system can reduce the searching time and advance the customer satisfaction measurement according to user's feedback to system.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

A Method on Associated Document Recommendation with Word Correlation Weights (단어 연관성 가중치를 적용한 연관 문서 추천 방법)

  • Kim, Seonmi;Na, InSeop;Shin, Juhyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.250-259
    • /
    • 2019
  • Big data processing technology and artificial intelligence (AI) are increasingly attracting attention. Natural language processing is an important research area of artificial intelligence. In this paper, we use Korean news articles to extract topic distributions in documents and word distribution vectors in topics through LDA-based Topic Modeling. Then, we use Word2vec to vector words, and generate a weight matrix to derive the relevance SCORE considering the semantic relationship between the words. We propose a way to recommend documents in order of high score.

A Study of User XQuery Pattern Method based Recommender System

  • Kim, Jin-Hong;Lee, Eun-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.476-479
    • /
    • 2005
  • The information available on the Internet has become widely used, primarily due to the ability of Web based E-Commerce and M-Commerce Retrieval Engines to find useful information for users. However, present day Commerce Retrieval Engines are far from perfect because they return results based on simple user keyword matches without any regard for the concepts in which the user is interested. In this thesis, we design and evaluate a Recommender system for web context aware based information retrieval using user profiles. Also, we designed personalization framework in ubiquitous environment based both e-commerce and m-commerce and presented the interaction of user profile including User XQuery pattern in semantic web.

  • PDF

Extraction of User Preference for Hybrid Collaborative Filtering

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.7-9
    • /
    • 2004
  • With the development of e-commerce and information access, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. In this paper, clustering technique is applied in the collaborative recommender framework to consider semantic contents available from the user profiles. We also suggest methods to construct user profiles from rating information and attributes of items to accommodate user preferences. Further, we show that the correct application of the semantic content information obtained from user profiles does enhance the effectiveness of collaborative recommendation.

  • PDF

Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed Information into OWL 2

  • Im, Chan jong;Kim, Do wan
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • Ontology is known to be one of the most important technologies in achieving semantic web. It is critical as it represents the knowledge in a machine readable state. World Wide Web Consortium (W3C) has been contributing to the development of ontology for the last several years. However, the recommendation of W3C left out HTML despite the massive amount of information it contains. Also, it is difficult and time consuming to keep up with all the technologies especially in the case of constructing ontology. Thus, we propose a module and methods that reuse HTML documents, extract necessary information from HTML tags and mapping it to OWL 2. We will be combining two kinds of approaches which will be the structural refinement for making an ontology skeleton and linguistic approach for adding detailed information onto the skeleton.