Abstract
Linked Data allows structured data to be published in a standard way that datasets from various domains can be interlinked. With the rapid evolution of Linked Open Data(LOD), researchers are exploiting it to solve particular problems such as semantic similarity assessment. In this paper, we propose a method, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating the Linked Data semantic distance between resources that can be used in the LOD-based recommender system. The semantic distance measurement model proposed in this paper is based on a similarity measurement that combines the LOD-based semantic distance and a new link weight using TF-IDF, which is well known in the field of information retrieval. In order to verify the effectiveness of this paper's approach, performance was evaluated in the context of an LOD-based recommendation system using mixed data of DBpedia and MovieLens. Experimental results show that the proposed method shows higher accuracy compared to other similar methods. In addition, it contributed to the improvement of the accuracy of the recommender system by expanding the range of semantic distance calculation.
링크드 데이터는 다양한 영역의 데이터세트를 서로 연결할 수 있는 표준 방식의 구조화된 데이터를 가능하게 한다. 그리고 링크드 오픈 데이터(LOD)의 급속한 발전에 따라 연구자들은 시맨틱 유사도 평가와 같은 특정 문제를 해결하기 위해 LOD를 이용하고 있다. 이 논문에서는 LOD-기반 추천 시스템에서 사용될 수 있는 자원 간의 링크드 데이터 시맨틱 거리를 계산하기위한 방법을 제안한다. 이 논문에서 제안된 시맨틱 거리 측정 모델은 LOD-기반 시맨틱 거리와 정보 검색 분야에서 잘 알려진 TF-IDF를 이용한 새로운 링크 가중치를 결합한 유사도 측정을 기반으로 한다. 이 논문의 접근방식의 효과성을 검증하기 위하여 DBpedia와 MovieLens의 혼합 데이터를 사용하여 LOD-기반 추천 시스템의 맥락에서 성능을 평가하였다. 실험 결과는 제안된 방법이 다른 유사한 방법과 비교하여 더 높은 정확도를 나타내었다. 또한 시맨틱 거리 계산의 범위를 넓혀서 추천 시스템의 정확도 향상에 기여하였다.