• Title/Summary/Keyword: Self-power generation

Search Result 194, Processing Time 0.03 seconds

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Grid-Connected Photovoltaic System Applying the Step Variable MPPT Control and DVR (Step 가변형 MPPT 제어기법과 DVR을 적용한 계통연계형 태양광 발전 시스템)

  • Lee, Yong-Sik;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.42-49
    • /
    • 2012
  • Grid-connected photovoltaic generator system requires high performance PCS(Power Conditioning System) according to the standard of 'Distributed Generation Grid-Connected Technology Standards'. This paper presents the MPPT control method which improves output efficiency through fast tracking to the maximum power point of PV and a reduced self-excited vibration. Secondly, in this paper DVR function was applied to PCS to compensate the voltage sag frequently happening for a power system. The proposed PCS control is analyzed and compared to conventional PCS operating characteristic, the various insolation and loads, and voltage sag condition through PSIM tool. It proves the utility.

The Effect of Some Physical Parameters on Saturation and Velocity Profiles in a Porous Medium

  • Ghyym S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-125
    • /
    • 1997
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction (i.e., liquid saturation) and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF

Consideration on the rotor design of a claw pump (클로펌프 회전자 설계에 대한 고찰)

  • IN, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.257-261
    • /
    • 1999
  • The claw pump, one of oil-less dry pumps developed to solve problems found in vacuum systems pumped by oil-sealed rotary pumps, has been widely used separately or as a part of compound structure with a roots pump. The claw pump has some merits such as a high pumping speed, a high compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is based on efficient sweeping action of the special type rotor and an intrinsic self-valving mechanism. The contour of the rotor with claw-type blade is designed basically to make two rotors revolve smoothly without touching with each other, and related dimensions are determined by required pumping speed, compression ratio, power demand and diameter of the rotor axis. In this paper the procedure of designing the rotor of the claw pump is described and factors influencing the pump performance are analyzed.

  • PDF

A study on theload dispersion a new PV tracking system (하중 분산형 새로운 태양광 추적 장치에 관한 연구)

  • Seo, J.J.;Song, S.K.;Park, S.J.;Lee, S.H.;Moon, C.J.;Kim, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1702-1704
    • /
    • 2005
  • In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The way that controls the daily generation magnitude according to latitude and longitude and uses two axles is often used in the existing sunlight racing system now. In this two-axle sunlight track control system the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the building already built up. This research is a development about the small-scale economy track device of independent load-dispersing type solar generation system. The position track algorithm is through calculating the trail of height and azimuthal of the sun calculation to follow the sun.

  • PDF

Bactericidal Effect of a 275-nm UV-C LED Sterilizer for Escalator Handrails: Optimization of Optical Structure and Evaluation of Sterilization of Six Bacterial Strains

  • Kim, Jong-Oh;Jeong, Geum-Jae;Son, Eun-Ik;Jo, Du-Min;Kim, Myung-Sub;Chun, Dong-Hae;Kim, Young-Mog;Ryu, Uh-Chan
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.202-211
    • /
    • 2022
  • In the pasteurization of escalator handrails using ultraviolet (UV) sterilizers, a combination of light distribution and escalator speed has priority over other important factors. Furthermore, since part of the escalator handrail has a curved structure, proper design is needed to improve the sterilization rate on the surfaces touched by users. In this paper, two types of sterilizers satisfying these conditions are manufactured with 275-nm UV-C LEDs, after modeling the three-dimensional (3D) structure of an escalator handrail and simulating optical distributions of UV-C irradiation on the handrail's surface according to light-emitting diode (LED) positions and reflector variations in the sterilizers. Pasteurization experiments with the UV-C LED sterilizers are conducted on six types of gram-positive and gram-negative bacteria, with exposure times of 0.2, 5, and 15 s at an actual installation distance of 20 mm. The sterilization rates for the gram-positive bacteria are 10.63% to 27.94% at 0.2 s, 89.44% to 96.30% at 5 s, and 99.64% to 99.88% at 15 s. Those for the gram-negative bacteria are 57.70% to 77.63% at 0.2 s, 98.90% to 99.49% at 5 s, and 99.88% to 99.99% at 15 s. The power consumption of the UV-C LED sterilizer is about 8 W, which can be supplied by a self-generation module instead of an external power supply.

Voltage Sag-Swell Generator for Power Quality Disturbance of Dynamic UPS System (다이나믹 UPS 시스템의 전력품질 외란발생을 위한 전압 Sag-Swell 발생기)

  • Byeon W. Y.;Kim J. W.;Lee K. S.;Nho E. C.;Kim I. D.;Chun T. W.;Kim H. G.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.102-107
    • /
    • 2005
  • This paper describes a new voltage sag-swell generator for the test of custom power devices such as UPS, DVR, DSTATCOM, SSTS, etc. Voltage sag, swell, outage, and unbalance generation mechanism and the operating principle are described for the proposed scheme. The usefulness of the scheme is proved through simulations and experiments. The proposed scheme has good features of simple structure, high reliability, wide range of sag and swell variation, and easy control. Especially, the scheme can provide a cost-effective implementation of a power quality disturbance generator. Therefore, it is expected that the scheme will contribute to the self implementation of the system with low cost in laboratory.

A Study on the Reconfiguration in the Regulation of Electric Safety Management for the Guarantee of Safety (안전성 확보를 위한 전기안전관리기준의 재설정에 관한 연구)

  • Chung, Jae-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.45-49
    • /
    • 2009
  • This study is to prepare a reasonable basis for the improvement of the electrical safety management regulation. The standards in domestic and foreign countries for the application of new and renewable energy facilities and other devices are analyzed. Other regulations excluding the electrical safety fields and wide surveys are also carried out. Consequently, it is asked that the classification between normal and self electrical facilities should be clear and deregulation for small businesses has to be followed. This study is showed that standards investigates of receiving equipment below 600V above 75kW, eletrical safety manager employment of manufacturing industry and Mid-night electric power. And, it is showed that consignment permission and Consignment inspection periodic relaxation about wind development equipment below 1,000kW, consignment of Technical Development equipment for new and renewable energy below 250kW.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Techniques of Water Quality Improvement by Using Ozone Generation System (오존발생시스템을 이용한 하천수질 개선기법)

  • Kim, Min-Young;Ryu, Jae-Wook;Lee, Seung-Yun;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2122-2126
    • /
    • 2008
  • With the degradation of water quality and, at the same time increased water usage, the sources of high quality, for examples, river/stream, municipal reservoir, wells, artisan and surface water, are diminishing. Therefore, the importance of water quality has been emphasized over the years through publications and various literature sources. Even though considerable research has resulted in significant strides for providing interpretive information and mitigation strategies for improvement of waters, the quality of which is still questionable. This study aims to propose a completely independent self-contained system for purifying waters, solar-powered ozone generator. It is a semi-permanent and cost effective environmental solution. Functions of ozone treatment are: 1) to maintain oxidative flexibility, 2) remove harmful chemicals, wastes, and other substances, and 3) prevent epizootic microbial outbreaks. Recent advances in technology have allowed the development of the practical, self-contained and independent solar powered device. Solar electrical producing panels that charge batteries are the key to using these systems anywhere electrical power is not available. This paper invites the readers to examine the problem and consider the viable, proven solution the solar powered ozone purifying system. This paper also introduces basic concept and background of solar powered ozone generators and examine its feasibility for improving water quality in rivers and streams.

  • PDF