• 제목/요약/키워드: Self-Powered Sensor

검색결과 46건 처리시간 0.023초

회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈 (Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices)

  • 김창일;여서영;박범근;정영훈;백종후
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf;Kim, Sang-Woo
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.293-300
    • /
    • 2022
  • Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.

Triboelectric Nanogenerators for Self-powered Sensors

  • Rubab, Najaf;Kim, Sang-Woo
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.79-84
    • /
    • 2022
  • Self-powered sensors play an important role in everyday life, and they cover a wide range of topics. These sensors are meant to measure the amount of relevant motion and transform the biomechanical activities into electrical signals using triboelectric nanogenerators (TENGs) since they are sensitive to external stimuli such as pressure, temperature, wetness, and motion. The present advancement of TENGs-based self-powered wearable, implantable, and patchable sensors for healthcare monitoring, human body motion, and medication delivery systems was carefully emphasized in this study. The use of TENG technology to generate electrical energy in real-time using self-powered sensors has been the topic of considerable research among various leading scholars. TENGs have been used in a variety of applications, including biomedical and healthcare physical sensors, wearable devices, biomedical, human-machine interface, chemical and environmental monitoring, smart traffic, smart cities, robotics, and fiber and fabric sensors, among others, as efficient mechanical-to-electric energy conversion technologies. In this evaluation, the progress accomplished by TENG in several areas is extensively reviewed. There will be a discussion on the future of self-powered sensors.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

산업전기 설비의 상태 감시를 위한 자가 발전 센서 시스템의 설계 (Design of Self-Powered Sensor System for Condition Monitoring of Industrial Electric Facilities)

  • 이기창;강동식;전정우;황돈하;이주훈;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.264-266
    • /
    • 2005
  • Recently, on-line diagnosis methods through wired and wireless networks are widely adopted in the diagnosis of industrial Electric Facilities, such as generators, transformers and motors. Also smart sensors which includes sensors, signal conditioning circuits and micro-controller in one board are widely studied in the field of condition monitoring. This paper suggests an self-powered system suitable for condition-monitoring smart sensors, which uses parasitic vibrations of the facilities as energy source. First, vibration-driven noise patterns of the electric facilities are presented. And then, an electromagnetic generator which uses mechanical mass-spring vibration resonance are suggested and designed. Finally energy consumption of the presented smart sensor, which consists of MEMS vibration sensors, signal conditioning circuits, a low-power consumption micro-controller, and a ZIGBEE wireless tranceiver, are presented. The usefulness and limits of the presented electromagnetic generators in the field of electric facility monitoring are also suggested.

  • PDF

Cutting-edge Piezo/Triboelectric-based Wearable Physical Sensor Platforms

  • Park, Jiwon;Shin, Joonchul;Hur, Sunghoon;Kang, Chong-Yun;Cho, Kyung-Hoon;Song, Hyun-Cheol
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.301-306
    • /
    • 2022
  • With the recent widespread implementation of Internet of Things (IoT) technology driven by Industry 4.0, self-powered sensors for wearable and implantable systems are increasingly gaining attention. Piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), which convert biomechanical energy into electrical energy, can be considered as efficient self-powered sensor platforms. These are energy harvesters that are used as low-power energy sources. However, they can also be used as sensors when an output signal is used to sense any mechanical stimuli. For sensors, collecting high-quality data is important. However, the accuracy of sensing for practical applications is equally important. This paper provides a brief review of the performance advanced by the materials and structures of the latest PENG/TENG-based wearable sensors and intelligent applications applied using artificial intelligence (AI)

전력계통 구조물의 상태진단용 자가발전 무선 센서 노드 개발 및 평가 (Development and Evaluation of Self-powered Energy Harvester in Wireless Sensor Node for Diagnosis of Electric Power System)

  • 김창일;정영훈;윤지선;홍연우;장용호;최범진;박신서;손천명;서덕기;백종후
    • 센서학회지
    • /
    • 제25권5호
    • /
    • pp.371-376
    • /
    • 2016
  • A self-powered piezoelectric energy harvester was developed for the application in wireless sensor node. The energy harvester was evaluated with power generation characteristics for the wireless sensor node for structural diagnosis of the electric power system. The self-powered wireless sensor node was set to measure temperature, vibration frequency of the electric power system. A piezoelectric harvester composed of 7 uni-morph cantilevers (functionalized as 6 generators and 1 vibration sensor) was connected to be an array and revealed to produce significantly high output power of approximately 10 mW at 120 Hz under 3.4 g((1 g = $9.8m/sec^2$). The wireless sensor node could work as the electric power generated by the developed piezoelectric harvester.

다중 에너지 수확을 이용한 자가발전 센서노드 회로 (A Multi-Harvested Self-Powered Sensor Node Circuit)

  • 서요한;이명한;정성현;양민재;윤은정;유종근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.585-588
    • /
    • 2014
  • 본 논문에서는 빛 에너지와 진동에너지 하베스팅을 이용한 자가발전 센서노드 회로를 제안한다. 솔라셀과 진동소자(PZT)에서 변환된 에너지는 저장 커패시터에 저장된다. 저장된 에너지는 PMU(Power Management Unit)를 통해 관리되고, 일정한 전압을 공급하기 위해 LDO(Low Drop Out Regulator)를 사용한다. LDO를 통해 공급된 안정된 전압으로 온도센서와 SAR ADC(Successive Approximate Register Analog-to-Digital Converter)를 구동시켜서 10bit 디지털 신호에 해당하는 온도정보를 출력한다. 제안된 회로는 0.35um CMOS 공정으로 설계되었으며, 설계된 회로의 칩 면적은 패드를 포함하여 $1.1mm{\times}0.95mm$ 이다.

  • PDF

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee;Hyunjin Kim;Inkyu Park
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.22-30
    • /
    • 2023
  • Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.