DOI QR코드

DOI QR Code

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hyunjin Kim (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Inkyu Park (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.01.19
  • Accepted : 2023.01.30
  • Published : 2023.01.31

Abstract

Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

Keywords

Acknowledgement

This work was supported by the following research grants. (1) This work was supported by the Technology Innovation Program (20020292, Development of Heterogeneous Multi-Sensor Micro-System Platform) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). (2) This work was supported by the Technology Development Program (3104117) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. H. Oh, G. C. Yi, M. Yip, and S. A. Dayeh, "Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics", Sci. Adv., Vol. 6, No. 46, pp. eabd7795(1)-eabd7795(14), 2020.
  2. S. Pyo, J. Lee, K. Bae, S. Sim, and J. Kim, "Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications", Adv. Mater., Vol. 33, No. 47, p. 2005902, 2021.
  3. J. C. Yang, J. O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, and S. Park, "Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature", ACS Appl. Mater. & Interfaces, Vol. 11, No. 21, pp. 19472-19480, 2019. https://doi.org/10.1021/acsami.9b03261
  4. M. I. Tiwana, S. J. Redmond, and N. H. Lovell, "A review of tactile sensing technologies with applications in biomedical engineering", Sens. Actuator A Phys., Vol. 179, pp. 17-31, 2012. https://doi.org/10.1016/j.sna.2012.02.051
  5. X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, "Miniature fiber-optic force sensor based on low-coherence Fabry-Perot interferometry for vitreoretinal microsurgery", Biomed. Opt. Express, Vol. 3, No. 5, pp.1062-1076, 2012. https://doi.org/10.1364/BOE.3.001062
  6. Y. Zhuang and R. J. Xie, "Mechanoluminescence rebrightening the prospects of stress sensing: a review", Adv. Mater., Vol. 33, No.50, p. 2005925, 2021.
  7. B. Hou, L. Yi, C. Li, H. Zhao, R. Zhang, B. Zhou, and X. Liu, "An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation", Nat. Electron., Vol. 5, No. 10, pp. 682-693, 2022. https://doi.org/10.1038/s41928-022-00841-8
  8. X. Zhang, Z. Li, W. Du, Y. Zhao, W. Wang, L. Pang, L. Chen, A. Yu, and J. Zhai, "Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli", Nano Energy, Vol. 96, p. 107115, 2022.
  9. X. Wang, M. Que, M. Chen, X. Han, X. Li, C. Pan, and Z. L. Wang, "Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing", Adv. Mater., Vol. 29, No. 15, p. 1605817, 2017.
  10. L. Su, Z. Jiang, Z. Tian, H. Wang, H. Wang, and Y. Zi, "Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence", Nano Energy, Vol. 79, p. 105431, 2021.
  11. J. Choi, D. Kwon, B. Kim, K. Kang, J. Gu, J. Jo, K. Na, J. Ahn, D. del Orbe, K. Kim, J. Park, J. Shim, J. Y. Lee, and I. Park, "Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell", Nano Energy, Vol. 74, p. 104749, 2020.
  12. X. Shi, Y. Chen, H.-L. Jiang, D.-L. Yu, and X.-L. Guo, "High-Density Force and Temperature Sensing Skin Using Micropillar Array with Image Sensor", Adv. Intell. Syst., Vol. 3, No. 8, p. 2000280, 2021.
  13. S. Shi, S. Xu, Z. Zhao, X. Niu, and M. K. Quinn, "3D surface pressure measurement with single light-field camera and pressure-sensitive paint", Exp. Fluids, Vol. 59, pp. 1-10, 2018. https://doi.org/10.1007/s00348-017-2450-7
  14. L. Su, Q. Xiong, H. Wang, and Y. Zi, "Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction", Sci. Adv., Vol. 9, No. 32, p. 2203510, 2022.
  15. Y. Zhuang, X. Li, F. Lin, C. Chen, Z. Wu, H. Luo, L. Jin, and R. Xie, "Visualizing Dynamic Mechanical Actions with High Sensitivity and High Resolution by Near-Distance Mechanoluminescence Imaging", Adv. Mater., Vol. 34, No. 36, p. 2202864, 2022.
  16. Z. Yu, G. Cai, X. Liu, and D. Tang, "Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection", Anal. Chem., Vol. 93, No. 5, pp. 2916-2925, 2021. https://doi.org/10.1021/acs.analchem.0c04501
  17. Y. Han, A. Varadarajan, T. Kim, G. Zheng, K. Kitani, A. Kelliher, T. Rikakis, and Y. L. Park, "Smart Skin: VisionBased Soft Pressure Sensing System for In-Home Hand Rehabilitation", Soft Robot., Vol. 9, No. 3, pp. 473-485, 2022. https://doi.org/10.1089/soro.2020.0083
  18. B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, and N. F. Lepora, "The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies", Soft Robot., Vol. 5, No. 2, pp. 216-227, 2018. https://doi.org/10.1089/soro.2017.0052
  19. P. A. Xu, A. K. Mishra, H. Bai, C. A. Aubin, L. Zullo, and R. F. Shepherd, "Optical lace for synthetic afferent neural networks", Sci. Robot., Vol. 4, No. 34, p. eaaw6304, 2019.
  20. B. Lee, J. Y. Oh, H. Cho, C. W. Joo, H. Yoon, S. Jeong, E. Oh, J. Byun, H. Kim, S. Lee, J. Seo, C. W. Park, S. Choi, N. M. Park, S. Y. Kang, C. S. Hwang, S. D. Ahn, J. I. Lee, and Y. Hong, "Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution", Nat. Commun., Vol. 11, No. 1, p. 663, 2020.
  21. Y. Li, P. Bai, H. Cao, L. Li, X. Li, X. Hou, J. Fang, J. Li, Y. Meng, L. Ma, and Y. Tian, "Imaging dynamic threedimensional traction stresses", Sci. Adv., Vol. 8, No. 11, p. eabm0984, 2022.
  22. Y. Yan,, Z. Hu, Z. Yang, W. Yuan, C. Song, J. Pan, and Y. Shen, "Soft magnetic skin for super-resolution tactile sensing with force self-decoupling", Sci. Robot., Vol. 6, No. 51, p. eabc8801, 2021.
  23. H. Sun and G. Martius, "Guiding the design of superresolution tactile skins with taxel value isolines theory", Sci. Robot., Vol. 7, No. 63, p. eabm0608, 2022.
  24. P. Piacenza, K. Behrman, B. Schifferer, I. Kymissis, and M. Ciocarlie, "A sensorized multicurved robot finger with datadriven touch sensing via overlapping light signals", IEEE/ASME Trans. Mechatron., Vol. 25, No. 5, pp. 2416-2427, 2020. https://doi.org/10.1109/TMECH.2020.2975578
  25. H. Sun, K. J. Kuchenbecker, and G. Martius, "A soft thumbsized vision-based sensor with accurate all-round force perception", Nat. Mach. Intell., Vol. 4, No. 2, pp. 135-145, 2022. https://doi.org/10.1038/s42256-021-00439-3
  26. G. Li, S. Liu, L. Wang, and R. Zhu, "Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition", Sci. Robot., Vol. 5, No. 49, p. eabc8134, 2020.
  27. S. Shimadera, K. Kitagawa, K. Sagehashi, Y., Niiyama, T. Miyajima, and S. Sunada, "Speckle-based high-resolution multimodal soft sensing", Sci. Rep., Vol. 12, No. 1, p. 13096, 2022.
  28. J. A. Barreiros, A. Xu, S. Pugach, N. Iyengar, G. Troxell, A. Cornwell, S. Hong, B. Selman, and R. F. Shepherd, "Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents", Sci. Robot., Vol. 7, No. 67 p. eabi6745, 2022.
  29. N. Yao, X. Wang, S. Ma, X. Song, S. Wang, Z. Shi, J. Pan, S. Wang, J. Xiao, and H. Liu, "Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement", Photonics Res., Vol. 10, No. 9, pp. 2040-2046, 2022. https://doi.org/10.1364/PRJ.461182
  30. T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu, J. Nie, T. Guo, Y. Pang, J. Zhao, F. Xi, C. Zhang, and Z. L. Wang, "Stretchable triboelectric-photonic smart skin for tactile and gesture sensing", Adv. Mat., Vol. 30, No. 16, p. 1800066, 2018.
  31. T. Kim, S. Lee, T. Hong, G. Shin, T. Kim, and Y. L. Park, "Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces", Sci. Robot., Vol. 5, No. 49, p.eabc6878, 2020.
  32. T. Takeshita, K. Harisaki, H. Ando, E. Higurashi, H. Nogami, and R. Sawada, "Development and evaluation of a two-axial shearing force sensor consisting of an optical sensor chip and elastic gum frame", Precis. Eng., Vol. 45, pp. 136-142, 2016. https://doi.org/10.1016/j.precisioneng.2016.02.004
  33. J. Zhou, Q. Shao, C. Tang, F. Qiao, T. Lu, X. Li, X. Liu, and H. Zhao, "Conformable and Compact Multiaxis Tactile Sensor for Human and Robotic Grasping via Anisotropic Waveguides", Adv. Mat. Technol., Vol. 7, No. 11, p. 2200595, 2022.