Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.5.293

Self-powered Sensors based on Piezoelectric Nanogenerators  

Rubab, Najaf (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Kim, Sang-Woo (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Publication Information
Journal of Sensor Science and Technology / v.31, no.5, 2022 , pp. 293-300 More about this Journal
Abstract
Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.
Keywords
Piezoelectric energy harvesters; Self-powered sensors; Nanogenerators; Stretchable; Implantable; Flexible healthcare monitoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. J. Lee, T. Y. Kim, S. W. Kim, S, Jeong, Y. Choi, and S. Y. Lee, "High-performance piezoelectric nanogenerators based on chemically reinforced composites", Energy Environ. Sci., Vol. 11, No. 6, pp. 1425-1430, 2018.   DOI
2 X. Chou, J. Zhu, S. Qian, X. Niu, J. Qian, X. Hou, J. Mu, W. Geng, J. Cho, J. He, and C. Xue, "All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring", Nano Energy, Vol. 53, pp. 550-558, 2018.   DOI
3 G. T. Hwang, H. Park, J. H. Lee, S. Oh, K. I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, and H. Kwon, "Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester", Adv. Mater., Vol. 26, No. 28, pp. 4880-4887, 2014.   DOI
4 X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, and H. Zhang, "Implantable and self-powered blood pressure monitoring based on a piezoelectric thin film: Simulated, in vitro and in vivo studies", Nano Energy, Vol. 22, pp. 453-460, 2016.   DOI
5 Q. Zhang, T. Jiang, D. Ho, S. Qin, X. Yang, J. H. Cho, Q. Sun, and Z. L. Wang, "Transparent and self-powered multistage sensation matrix for mechanosensation application", ACS Nano, Vol. 12, No. 1, pp. 254-262, 2018.   DOI
6 C. I. Kim, T. H. Kwon, S. Y. Yeo, J. S. Yun, Y. H. Jeong, Y. W. Hong, J. H. Cho, and J. H. Paik, "Study of Broadband Piezoelectric Harvester using the Bender-Type Module", J. Sens. Sci. Technol., Vol. 27, No. 2, pp. 112-117, 2018.
7 V. Vivekananthan, A. Chandrasekhar, N. R. Alluri, Y. Purusothaman, W. J. Kim, C. N. Kang, and S. J. Kim, "A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles", Mater. Lett., Vol. 249, pp. 73-76, 2019.   DOI
8 S. Wang, H. Q. Shao, Y. Liu, C. Y. Tang, X. Zhao, K. Ke, R. Y. Bao, M. B. Yang, and W. Yang, "Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor", Compos. Sci. Technol., Vol. 202, p. 108600, 2021.   DOI
9 S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park, and Z. L. Wang, "Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor", Adv. Funct. Mater., Vol. 23, No. 19, pp. 2445-2449, 2013.   DOI
10 M. Du, D. Zhang, W. Fan, K. Zhao, Y. Xia, Z. Nie, and K. Sui, "Ionic diode-based self-powered ionic skins with multiple sensory capabilities", Mater. Today Phys., p. 100744, 2022.
11 S. A. Han, T. H. Kim, S. K. Kim, K. H. Lee, H. J. Park, J. H. Lee, and S. W. Kim, "Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator", Adv. Mater., Vol. 30, No. 21, p. 1800342, 2018.   DOI
12 Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Sci., Vol. 312, No. 5771, pp. 242-246, 2006.   DOI
13 W. Han, H. He, L. Zhang, C. Dong, H. Zeng, Y. Dai, L. Xing, Y. Zhang, and X. Xue, "A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays", ACS Appl. Mater. Interfaces, Vol. 9, No. 35, pp. 29526-29537, 2017.   DOI
14 D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, and L. Yu, "Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator", Nanomicro lett., Vol. 13, No .1, pp. 1-13, 2021.
15 D. C. Han, H. J. Shin, S. H. Yeom, and W. Lee, "Wearable human health-monitoring band using inkjet-printed flexible temperature sensor", J. Sens. Sci. Technol., Vol. 26, No. 5, pp. 301-305, 2017.
16 Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 145-150. 2022.   DOI
17 J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim, S. S. Kwak, and S. W. Kim, "High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P (VDF-TrFE) with controlled crystallinity and dipole alignment", Adv. Funct. Mater., Vol. 27, No. 22, p. 1700702, 2017.   DOI
18 S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim, and J. M. Kim, "Sound-driven piezoelectric nanowire-based nanogenerators", Adv. Mater., Vol. 22, No. 42, pp. 4726-4730, 2010.   DOI
19 S. Ahn, Y. Cho, S. Park, J. Kim, J. Sun, D. Ahn, M. Lee, D. Kim, T. Kim, H. Shin, and J. J. Park, "Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals", Nano Energy, Vol. 74, p. 104932, 2020.   DOI
20 Z. Huo, X. Wang, Y. Zhang, B. Wan, W. Wu, J. Xi, Z. Yang, G. Hu, X. Li, and C. Pan, "High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors", Nano Energy, Vol. 73, p. 104744, 2020.   DOI
21 A. Wang, Z. Liu, M. Hu, C. Wang, X. Zhang, B. Shi, Y. Fan, Y. Cui, Z. Li, and K. Ren, "Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing", Nano Energy, Vol. 43, pp. 63-71, 2018.   DOI
22 X. Hou, S. Zhang, J. Yu, M. Cui, J. He, L. Li, X. Wang, and X. Chou, "Flexible Piezoelectric Nanofibers/Polydimethylsiloxane-Based Pressure Sensor for Self-Powered Human Motion Monitoring", Energy Technol., Vol. 8, No. 3, p. 1901242, 2020.   DOI
23 R. Sun, S. C. Carreira, Y. Chen, C. Xiang, L. Xu, B. Zhang, M. Chen, I. Farrow, F. Scarpa, and J. Rossiter, "Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring", Adv. Mater. Technol., Vol. 4, No. 5, p. 1900100, 2019.   DOI
24 S. Lee, D. Kim, S. Lee, Y. I. Kim, S. Kum, S. W. Kim, Y. Kim, S. Ryu, and M. Kim, "Ambient Humidity-Induced Phase Separation for Fiber Morphology Engineering toward Piezoelectric Self-Powered Sensing", Small, Vol. 18, No. 17, p. 2105811, 2022.   DOI
25 P. Li and Z. Zhang, "Self-powered 2D material-based pH sensor and photodetector driven by monolayer MoSe2 piezoelectric nanogenerator", ACS Appl. Mater. Interfaces, Vol. 12, No. 52, pp. 58132-58139, 2020.   DOI
26 Y. Hong, B. Wang, W. Lin, L. Jin, S. Liu, X. Luo, J. Pan, W. Wang, and Z. Yang, "Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders", Sci. Adv., Vol. 7, No. 11, p. eabf0795, 2021.   DOI
27 D. Y. Park, D. J. Joe, D. H. Kim, H. Park, J. H. Han, C. K. Jeong, H. Park, J. G. Park, B. Joung, and K. J. Lee, "Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors", Adv. Mater., Vol. 29, No. 37, pp. 1702308, 2017   DOI
28 Z. Zhao, Y. Dai, S. X. Dou, and J. Liang, "Flexible nanogenerators for wearable electronic applications based on piezoelectric materials", Mater. Today Energy, Vol. 20, p. 100690. 2021.   DOI
29 T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, and L. Zhang, "Hierarchally structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics", Nano Energy, Vol. 72, p. 104706, 2020.   DOI