Browse > Article
http://dx.doi.org/10.5369/JSST.2016.25.5.371

Development and Evaluation of Self-powered Energy Harvester in Wireless Sensor Node for Diagnosis of Electric Power System  

Kim, Chang Il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
Yun, Ji Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
Hong, Youn Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
Jang, Yong-Ho (Senbool Inc.)
Choi, Beom-Jin (Senbool Inc.)
Park, Shin-Seo (Senbool Inc.)
Son, Chun Myung (KDN Electric power IT Research Institute, KEPCO KDN Co.)
Seo, Duck Ki (KDN Electric power IT Research Institute, KEPCO KDN Co.)
Paik, Jong Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Sensor Science and Technology / v.25, no.5, 2016 , pp. 371-376 More about this Journal
Abstract
A self-powered piezoelectric energy harvester was developed for the application in wireless sensor node. The energy harvester was evaluated with power generation characteristics for the wireless sensor node for structural diagnosis of the electric power system. The self-powered wireless sensor node was set to measure temperature, vibration frequency of the electric power system. A piezoelectric harvester composed of 7 uni-morph cantilevers (functionalized as 6 generators and 1 vibration sensor) was connected to be an array and revealed to produce significantly high output power of approximately 10 mW at 120 Hz under 3.4 g((1 g = $9.8m/sec^2$). The wireless sensor node could work as the electric power generated by the developed piezoelectric harvester.
Keywords
Piezoelectric Transducer; sensor node; Energy harvester; Electric power system;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Priya and D. J. Inman, Energy Harvesting Technologies, Springer, New York, pp. 3-39, 2009.
2 A. Romero, R. O. Warrington, and M. R. Neuman, "Energy scavenging sources for biomedical sensors", Physiological Measurement, Vol. 30, pp. 35-36, 2009.
3 S. Roundy, "On the effectiveness of vibration based energy harvesting", Journal of Intelligent Material Systems and Structures, Vol. 16, 2005.
4 T. Starner, "Human-powered Wearable Computing", IBM Systems Journal, Vol. 35, pp. 618-629, 1996.   DOI
5 J. Kymissis, C. Kendall, J. Paradiso, and N. G. Parasitic, "Power Harvesting in Shoes", In Second International Symposium on Wearable Computers, pp. 132-139, 1998.
6 J. A. Paradiso and M. Feldmeier, "A Compact, Wireless, Self-Powered Pushbutton Controller", In Proceedings of the 3rd International Conference on Ubiquitous Computing, pp. 299-304, 2001.
7 K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and R. K. Brimon, "A sensor network systems for railway bridge monitoring", In Proceeding of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 2-14, 2008.
8 R. G. Lee, K. C. Chen, S. S. Chiang, C. C. Lai, H. S. Liu, and M. S. Wei, "A backup routing with wireless sensor network for bridge monitoring system", IEEE Computer Society, pp. 157-161, 2006.
9 S. D. Kwon, "A T-shaped piezoelectric cantilever for fluid energy harvesting", Applied Physics Letters, Vol. 97, p. 164102, 2010.   DOI
10 S. Li, J. Yuan, and H. Lipson, "Ambient wind energy harvesting using cross-flow fluttering", Journal of Applied Physics, Vol. 109, p. 026104, 2011.   DOI
11 A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons, United Kingdom, pp. 1-342, 2011.
12 S. Roundy, P.K. Wright, and J. Rabaey, "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes", Computer Communications, Vol. 26, No. 11, pp. 1131-1144, 2003.   DOI
13 P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, "Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices", IEEE, Vol. 96, No. 9, pp. 1457-1486, 2008.   DOI
14 N. S. Shenck and J. A. Paradiso, "Energy Scavenging with Shoe-mounted Piezoelectrics. Micro", IEEE, Vol. 21, No. 3, pp. 30-42, 2001.
15 C. I. Kim, Y. H. Jeong, J. S. Yun, J. H. Cho, J. H. Paik, Y. H. Jang, B. J. Choi, S. S. Park, and Y. B. Cho, "Development and evaluation of the bender type piezoelectric energy harvester according to installation methods and vehicle weight", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 29, No. 5, pp. 274-278, 2016.   DOI
16 C. I. Kim, J. H. Lee, K. B. Kim, Y. H. Jeong, J. H. Cho, J. H. Paik, Y. J. Lee, and S. Nahm, "Design and electrical properties of piezoelectric energy harvester for roadway", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 24, No. 7, pp. 554-558, 2011.   DOI
17 C. I. Kim, K. B. Kim, J. H. Jeon, Y. H. Jeong, J. H. Cho, J. H. Paik, I. S. Kang, M. Y. Lee, B. J. Choi, Y. B. Cho, S. S. Park, S. Nahm, and Y. J. Lee, "Development and evaluation of the road energy harvester using piezoelectric cantilevers", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 25, No. 7, pp. 511-515, 2012.   DOI
18 C. I. Kim, K. B. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, I. S. Kang, M. Y. Lee, B. J. Choi, S. S. Park, Y. B. Cho, and S. Nahm, "Development and evaluation of the road energy harvester according to piezoelectric cantilever structure and vehicle load transfer mechanism", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 25, No. 10, pp. 773-778, 2012.   DOI
19 J. H. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. Ha. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. S. Jeong, and D. Y. Jeong, "Ubiquitous magneto-mechano-electric generator", Energy & Environmental Science, Vol. 8, pp. 2402-2408, 2015.   DOI
20 V. Annapureddy, M. S. Kim, Haribabu P, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, J. H. Ryu, "Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite", Adv. Energy Materials, p. 1601244, 2016.