DOI QR코드

DOI QR Code

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kim, Sang-Woo (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
  • Received : 2022.08.24
  • Accepted : 2022.09.29
  • Published : 2022.09.30

Abstract

Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.

Keywords

Acknowledgement

This work was financially supported by Nano Material Technology Development Program (2020M3H4A1A03084600) and Basic Science Research Programs (2021R1A2C2010990) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT.

References

  1. Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Sci., Vol. 312, No. 5771, pp. 242-246, 2006. https://doi.org/10.1126/science.1124005
  2. Z. Zhao, Y. Dai, S. X. Dou, and J. Liang, "Flexible nanogenerators for wearable electronic applications based on piezoelectric materials", Mater. Today Energy, Vol. 20, p. 100690. 2021. https://doi.org/10.1016/j.mtener.2021.100690
  3. S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park, and Z. L. Wang, "Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor", Adv. Funct. Mater., Vol. 23, No. 19, pp. 2445-2449, 2013. https://doi.org/10.1002/adfm.201202867
  4. W. Han, H. He, L. Zhang, C. Dong, H. Zeng, Y. Dai, L. Xing, Y. Zhang, and X. Xue, "A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays", ACS Appl. Mater. Interfaces, Vol. 9, No. 35, pp. 29526-29537, 2017. https://doi.org/10.1021/acsami.7b07990
  5. M. Du, D. Zhang, W. Fan, K. Zhao, Y. Xia, Z. Nie, and K. Sui, "Ionic diode-based self-powered ionic skins with multiple sensory capabilities", Mater. Today Phys., p. 100744, 2022.
  6. D. C. Han, H. J. Shin, S. H. Yeom, and W. Lee, "Wearable human health-monitoring band using inkjet-printed flexible temperature sensor", J. Sens. Sci. Technol., Vol. 26, No. 5, pp. 301-305, 2017.
  7. C. I. Kim, T. H. Kwon, S. Y. Yeo, J. S. Yun, Y. H. Jeong, Y. W. Hong, J. H. Cho, and J. H. Paik, "Study of Broadband Piezoelectric Harvester using the Bender-Type Module", J. Sens. Sci. Technol., Vol. 27, No. 2, pp. 112-117, 2018.
  8. Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 145-150. 2022. https://doi.org/10.46670/JSST.2022.31.3.145
  9. J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim, S. S. Kwak, and S. W. Kim, "High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P (VDF-TrFE) with controlled crystallinity and dipole alignment", Adv. Funct. Mater., Vol. 27, No. 22, p. 1700702, 2017. https://doi.org/10.1002/adfm.201700702
  10. S. A. Han, T. H. Kim, S. K. Kim, K. H. Lee, H. J. Park, J. H. Lee, and S. W. Kim, "Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator", Adv. Mater., Vol. 30, No. 21, p. 1800342, 2018. https://doi.org/10.1002/adma.201800342
  11. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, and L. Yu, "Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator", Nanomicro lett., Vol. 13, No .1, pp. 1-13, 2021.
  12. S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim, and J. M. Kim, "Sound-driven piezoelectric nanowire-based nanogenerators", Adv. Mater., Vol. 22, No. 42, pp. 4726-4730, 2010. https://doi.org/10.1002/adma.201001169
  13. S. Ahn, Y. Cho, S. Park, J. Kim, J. Sun, D. Ahn, M. Lee, D. Kim, T. Kim, H. Shin, and J. J. Park, "Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals", Nano Energy, Vol. 74, p. 104932, 2020. https://doi.org/10.1016/j.nanoen.2020.104932
  14. D. Y. Park, D. J. Joe, D. H. Kim, H. Park, J. H. Han, C. K. Jeong, H. Park, J. G. Park, B. Joung, and K. J. Lee, "Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors", Adv. Mater., Vol. 29, No. 37, pp. 1702308, 2017 https://doi.org/10.1002/adma.201702308
  15. Z. Huo, X. Wang, Y. Zhang, B. Wan, W. Wu, J. Xi, Z. Yang, G. Hu, X. Li, and C. Pan, "High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors", Nano Energy, Vol. 73, p. 104744, 2020. https://doi.org/10.1016/j.nanoen.2020.104744
  16. E. J. Lee, T. Y. Kim, S. W. Kim, S, Jeong, Y. Choi, and S. Y. Lee, "High-performance piezoelectric nanogenerators based on chemically reinforced composites", Energy Environ. Sci., Vol. 11, No. 6, pp. 1425-1430, 2018. https://doi.org/10.1039/C8EE00014J
  17. X. Chou, J. Zhu, S. Qian, X. Niu, J. Qian, X. Hou, J. Mu, W. Geng, J. Cho, J. He, and C. Xue, "All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring", Nano Energy, Vol. 53, pp. 550-558, 2018. https://doi.org/10.1016/j.nanoen.2018.09.006
  18. V. Vivekananthan, A. Chandrasekhar, N. R. Alluri, Y. Purusothaman, W. J. Kim, C. N. Kang, and S. J. Kim, "A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles", Mater. Lett., Vol. 249, pp. 73-76, 2019. https://doi.org/10.1016/j.matlet.2019.02.134
  19. G. T. Hwang, H. Park, J. H. Lee, S. Oh, K. I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, and H. Kwon, "Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester", Adv. Mater., Vol. 26, No. 28, pp. 4880-4887, 2014. https://doi.org/10.1002/adma.201400562
  20. X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, and H. Zhang, "Implantable and self-powered blood pressure monitoring based on a piezoelectric thin film: Simulated, in vitro and in vivo studies", Nano Energy, Vol. 22, pp. 453-460, 2016. https://doi.org/10.1016/j.nanoen.2016.02.037
  21. A. Wang, Z. Liu, M. Hu, C. Wang, X. Zhang, B. Shi, Y. Fan, Y. Cui, Z. Li, and K. Ren, "Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing", Nano Energy, Vol. 43, pp. 63-71, 2018. https://doi.org/10.1016/j.nanoen.2017.11.023
  22. R. Sun, S. C. Carreira, Y. Chen, C. Xiang, L. Xu, B. Zhang, M. Chen, I. Farrow, F. Scarpa, and J. Rossiter, "Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring", Adv. Mater. Technol., Vol. 4, No. 5, p. 1900100, 2019. https://doi.org/10.1002/admt.201900100
  23. T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, and L. Zhang, "Hierarchally structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics", Nano Energy, Vol. 72, p. 104706, 2020. https://doi.org/10.1016/j.nanoen.2020.104706
  24. Q. Zhang, T. Jiang, D. Ho, S. Qin, X. Yang, J. H. Cho, Q. Sun, and Z. L. Wang, "Transparent and self-powered multistage sensation matrix for mechanosensation application", ACS Nano, Vol. 12, No. 1, pp. 254-262, 2018. https://doi.org/10.1021/acsnano.7b06126
  25. S. Lee, D. Kim, S. Lee, Y. I. Kim, S. Kum, S. W. Kim, Y. Kim, S. Ryu, and M. Kim, "Ambient Humidity-Induced Phase Separation for Fiber Morphology Engineering toward Piezoelectric Self-Powered Sensing", Small, Vol. 18, No. 17, p. 2105811, 2022. https://doi.org/10.1002/smll.202105811
  26. P. Li and Z. Zhang, "Self-powered 2D material-based pH sensor and photodetector driven by monolayer MoSe2 piezoelectric nanogenerator", ACS Appl. Mater. Interfaces, Vol. 12, No. 52, pp. 58132-58139, 2020. https://doi.org/10.1021/acsami.0c18028
  27. S. Wang, H. Q. Shao, Y. Liu, C. Y. Tang, X. Zhao, K. Ke, R. Y. Bao, M. B. Yang, and W. Yang, "Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor", Compos. Sci. Technol., Vol. 202, p. 108600, 2021. https://doi.org/10.1016/j.compscitech.2020.108600
  28. X. Hou, S. Zhang, J. Yu, M. Cui, J. He, L. Li, X. Wang, and X. Chou, "Flexible Piezoelectric Nanofibers/Polydimethylsiloxane-Based Pressure Sensor for Self-Powered Human Motion Monitoring", Energy Technol., Vol. 8, No. 3, p. 1901242, 2020. https://doi.org/10.1002/ente.201901242
  29. Y. Hong, B. Wang, W. Lin, L. Jin, S. Liu, X. Luo, J. Pan, W. Wang, and Z. Yang, "Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders", Sci. Adv., Vol. 7, No. 11, p. eabf0795, 2021. https://doi.org/10.1126/sciadv.abf0795