• 제목/요약/키워드: Self diffusion

검색결과 386건 처리시간 0.023초

환경문제의 위해도 인식과 위해도 홍보 프로그램의 효과분석 -라돈과 다이옥신을 중심으로- (A Study on Risk Communication and Risk Perception in Environmental Problems)

  • 김진용;신동천;박성은;임영욱;황만식
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권4호
    • /
    • pp.315-324
    • /
    • 2002
  • Risk communication can be defined as the exchange of information about the nature, magnitude, significance, acceptability, and management of risk. The effect of risk communication on the perception and knowledge towards risk of environmental pollutants and it's related factors were investigated in this study. To investigate perception and knowledge of students and teachers towards risk of environmental pollutants, we conducted the survey using self-administrated questionnaire. The subjects were 574 for the first survey and 465 for the seconds survey from May to June, 2000. The main methods of transmission used in this study- through video tape, visual materials, question and answer, and participation in measuring pollutants - were not a one - way street. But an interactive process where information and opinions were exchanged among individuals, groups, and institutions. Environmental pollutants measured with participation of study subjects was Radon in the class room. The concentration of Radon was measured using E -PERM Device by installing it at each site for about 5 days. Subjects showed much interest in environmental pollution. Also, more than 98% of total subjects were perceived as Korea is seriously contaminated at present. By risk communication activity, risk perception of all subjects about Radon was increased, on the other hand, risk perception of Dioxin was decreased except for elementary student. Moreover, knowledge of all subjects about environmental risk was significantly increased (p =0.0001) and effort of reducing environmental pollution was more increased (p<0.05). There is need to further develop, refine, and integrate these approaches environmental risk communication study, there is an even more pressing need to accelerate the diffusion of environmental risk communication practice into government and organizations.

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung
    • 천문학회지
    • /
    • 제43권2호
    • /
    • pp.25-39
    • /
    • 2010
  • We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.

Investments on Pro-poor Development Projects on Goats: Ensuring Success for Improved Livelihoods

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The elements that determine the success of development projects on goats and the prerequisites for ensuring this are discussed in the context of the bewildering diversity of goat genetic resources, production systems, multifunctionality, and opportunities for responding to constraints for productivity enhancement. Key determinants for the success of pro-poor projects are the imperatives of realistic project design, resolution of priorities and positive impacts to increase investments and spur agricultural growth, and appropriate policy. Throughout the developing world, there exist 97% of the total world population of 921 million goats across all agroecological zones (AEZs), including 570 breeds and 64% share of the breeds. They occupy a very important biological and socioeconomic niche in farming systems making significant multifunctional contributions especially to food, nutrition and financial security, stability of farm households, and survival of the poor in the rural areas. Definitions are given of successful and failed projects. The analyses highlighted in successful projects the value of strong participatory efforts with farmers and climate change. Climate change effects on goats are inevitable and are mediated through heat stress, type of AEZ, water availability, quantity and quality of the available feed resources and type of production system. Within the prevailing production systems, improved integrated tree crops - ruminant systems are underestimated and are an important pathway to enhance C sequestration. Key development strategies and opportunities for research and development (R and D) are enormous, and include inter alia defining a policy framework, resolution of priority constraints using systems perspectives and community-based participatory activities, application of yield-enhancing technologies, intensification, scaling up, and impacts. The priority for development concerns the rainfed areas with large concentrations of ruminants in which goats, with a capacity to cope with heat tolerance, can be the entry point for development. Networks and networking are very important for the diffusion of information and can add value to R and D. Well formulated projects with clear priority setting and participatory R and D ensure success and the realisation of food security, improved livelihoods and self-reliance in the future.

학교도서관 중심의 정보활용능력 교육 수용에 관한 연구 (A Study on the Acceptance of Information Literacy Instruction for School Libraries in Korea)

  • 김연례;홍현진
    • 한국도서관정보학회지
    • /
    • 제37권3호
    • /
    • pp.3-32
    • /
    • 2006
  • 본 연구는 제 7 차 교육과정 이후 학교 수업에서 교육의 효과를 제고하기 위해 등장한 ICT(Information Communication Technology) 활용교육의 궁극적인 목적인 정보활용능력에 대해서 살펴보고 정보기술 수용 및 확산에 영향을 미치는 요인 분석에 유용한 이론적 기초를 제공해 주는 기술수용모형 (TAM: Technology Acceptance Model)을 토대로 하여, 정보활용능력 교육의 수용 과정에 영향을 미치는 변인으로 인지된 유용성, 인지된 용이성, 태도 정보활용능력 통합교육의 효과성, 교사의 혁신성, 사서교사와 학교도서관의 적합성과 지원, 자기효능감 등을 설정하였다. 이러한 변수들이 정보활용능 력 교육의 수용 과정에 어떤 영향을 미치는지를 실증적 연구를 통하여 확인해보고 이를 통해 정보활용능력 교육의 활성화를 위한 시사점을 찾고자 하였다.

  • PDF

기계적 합금화에 의한 Ni Silicide 분말의 합성에 미치는 원소 분말의 입도 및 형상의 영향 (Effects of Elemental Powder Particle Size and Shape on the Synthesis of Ni Silicides by Mechanical Alloying)

  • 변창선
    • 한국분말재료학회지
    • /
    • 제6권3호
    • /
    • pp.215-223
    • /
    • 1999
  • The synthesis of $Ni_5Si_2,\;Ni_2Si$ and NiSi has been investigated by mechanical alloying (MA) of Ni-27.9at%Si, Ni-33.3at%Si and Ni-50.0at%Si powder mixtures. As-received and premilled elemental powders were subjected to MA. The as-received Ni powder was spherical and the mean particle size 48.8$\mu$m, whereas the premilled Ni powder was flaky and the mean particle diameter and thickness were found to be 125 and 5$\mu$m, respectively. The mean surface area of the premilled Mi powder particle was 3.5 times as large as that of the as-received Ni powder particle. The as-received Si powder was was 10.0$\mu$m. Self-propagating high-temperature synthesis (SHS) reaction, followed by a slow reaction (a solid state diffusion), was observed to produce each Ni silicide during MA of the as-received elemental powders. In other word , the reactants and product coexisted for a long period of MA of time. Only SHS reaction was, however, observed to produce each Ni silicide during MA of the premilled elemental powders, indicating that each Ni sillicide formed rather abruptly at a short period of MA time. The mechanisms and reaction rates for the formation of the Ni silicides appeared to be influenced by the elemental powder particle size and shape as well as the heat of formation of the products $(Ni_5Si_2$longrightarrow-43.1kJ/mol.at., $Ni_2Si$$\rightarrow$-47.6kJ/mol.at.).

  • PDF

Recent instrumentation system safety instrumentation and man-machine interface

  • Satake, Noboru
    • 전기의세계
    • /
    • 제25권6호
    • /
    • pp.8-13
    • /
    • 1976
  • The industrial processes have become complicated on a large scale bacause of improvement of productivity, research of efficiency, and shortage of locations to be suited for foundation of factories. Consequently, the instrumentation and control systems for operating these industrial processes have also been highly improved with the development of mass information means. In order to operate these large-sized and complicated industrial processes safely, the man-machine interface for correspondence between man and machines and the instrumentation system regarding process fault processing are playing an important role increasingly. This paper describes recent instrumentation system in the water purifying plant as an example of these industrial processes, and covers both man-machine interface and process fault processing. The annual water supply quantity and diffusion were 2, 000, 000, 000m$^{3}$ and 25.0% in 1950 inJapan, but they amounted to 12, 000, 000, 000m$^{3}$ and 86.7% in 1974, respectively. The demands of water will increase incessantly, while it becomes gradually difficult to secure water sources. Accordingly, local self-governing bodies such as municipal cooperation, towns, and villages often construct a large-scale water purifying plant at one place in common, as required, without constructing respective plants independently. It is an absolute requirement for the water purifying plant to avoid stopping water supply to fullfil its social responsibility from the viewpoints of its public utility enterprise, and also it has gradually become difficult to secure skilled operators enough to cover such water purifying plants that are additionally provided in various districts. Thus, the importance of the man-machine interface for assuring safety operation of the water purifying plant irrespective of unskillfulness of operators as well as the instrumentation system regarding process fault processing, or, safety instrumentation, is more and more increasing as the water purifying plants are on a large scale.

  • PDF

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제45권5호
    • /
    • pp.127-138
    • /
    • 2012
  • We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.

자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘 (Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method)

  • 하호;황규민;한희동
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

자기 정렬된 Mo2N/Mo 게이트 MOSFET의 제조 및 특성 (fabrication of Self-Aligned Mo2N/MO-Gate MOSFET and Its Characteristics)

  • 김진섭;이종현
    • 대한전자공학회논문지
    • /
    • 제21권6호
    • /
    • pp.34-41
    • /
    • 1984
  • RMOS(refractors metal oxide semiconductor)의 게이트 금속으로 사용되는 Mo2N/Mo 이중층을 N2와 Ar을 혼합하여 저온의 반응성 스펏터링법으로 제조하였다. Ar : N2=95 : 5로 혼합된 가스 분위기에서 반응성 스펏터링을 할 때 Mo2N이 잘 형성되었다. 이렇게 제조한 Mo2N 박막은 면저항이 약 1.20∼1.28Ω/□로서 다결정 실리콘의 1/10정도가 되어 반도체 소자의 동작속도를 크게 향상시킬 것으로 기대된다. 1100℃의 N2분위기에서 PSC(phosphorus silicate glass)를 불순물 확산원으로 하여 소오스와 드레인의 불순물 확산을 할때 Mo2N 박막이 Mo으로 환원되어 확산전의 면저항보다 훨씬 작은 약 0.38Ω/□정도의 면저항을 나타내었다. 본 실험에서 제작한 자기정렬된 RMOSFET의 문턱전압은 약 -1.5V이고 결핍과 증가의 두 가지 동작특성을 나타내었다.

  • PDF