DOI QR코드

DOI QR Code

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Received : 2012.08.03
  • Accepted : 2012.09.13
  • Published : 2012.10.31

Abstract

We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Abdo, A. A. et al. 2010, Fermi Large Area Telescope Observations of the Supernova RemnantW28 (G6.4- 0.1), ApJ, 718, 348 https://doi.org/10.1088/0004-637X/718/1/348
  2. Abdo, A. A. et al. 2011, Observations of the Young Supernova Remnant RX J1713.7-3946 with the Fermi Large Area Telescope, ApJ, 734,28 https://doi.org/10.1088/0004-637X/734/1/28
  3. Acero, F. et al. 2010, First Detection of VHE ${\gamma}$-Rays from SN 1006 by HESS, A&A, 516, A62 https://doi.org/10.1051/0004-6361/200913916
  4. Acciari, V. A., et al. 2011, Discovery of TeV Gamma- Ray Emission from Tycho's Supernova Remnant, ApJ, 730, L20 https://doi.org/10.1088/2041-8205/730/2/L20
  5. Ave, M., Boyle, P. J., Hoppner, C., Marshall, J., & Muller, D. 2009, Propagation and Source Energy Spectral of Cosmic Ray Nuclei at High Energies, ApJ, 697, 106 https://doi.org/10.1088/0004-637X/697/1/106
  6. Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  7. Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MNRAS, 353, 550 https://doi.org/10.1111/j.1365-2966.2004.08097.x
  8. Berezhko, E. G., & Volk, H. J. 1997, Kinetic Theory of Cosmic Rays and Gamma Rays in Supernova Remnants. I. Uniform Interstellar Medium, Astropart. Phys., 7, 183 https://doi.org/10.1016/S0927-6505(97)00016-9
  9. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The Case of SN 1006, A&A, 505, 169 https://doi.org/10.1051/0004-6361/200911948
  10. Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of CosmicRay Origin, Phys. Rept., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  11. Caprioli, D., Blasi, P., Amato, E., & Vietri, M. 2009, Dynamical Feedback of Self-generated Magnetic Fields in Cosmic Ray Modified Shock, MNRAS, 395, 895 https://doi.org/10.1111/j.1365-2966.2009.14570.x
  12. Caprioli, D. 2012, Cosmic-Ray Acceleration in Supernova Remnants: Non-Linear Theory Revised, JCAP, 7, 38
  13. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  14. Drury, L. O'C. 2011, Escaping the Accelerator: How, When and in What Numbers Do Cosmic Rays Get out of Supernova Remnants?, MNRAS, 415, 1807 https://doi.org/10.1111/j.1365-2966.2011.18824.x
  15. Edmon, P. P., Kang, H., Jones, T. W., & Ma, R. 2011, Non-Thermal Radiation from Type Ia Supernova Remnants, MNRAS, 414, 3521 https://doi.org/10.1111/j.1365-2966.2011.18652.x
  16. Eriksen, K. A., Hughes, J. P., Badenes, C., et al. 2011, Evidence for Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho's Supernova Remnant, ApJ, 728, L28 https://doi.org/10.1088/2041-8205/728/2/L28
  17. Garate L., & Spitkovsky, A. 2012, Ion Acceleration in Non-relativistic Astrophysical Shocks, ApJ, 744, 67 https://doi.org/10.1088/0004-637X/744/1/67
  18. Giordano, F., et al. 2012, Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho, ApJ, 744, L2 https://doi.org/10.1088/2041-8205/744/1/L2
  19. Guo, F., Jokipii, J. R., & Kota, J. 2010, Particle Acceleration by Collisionless Shocks Containing Large- Scale, Magnetic-Field Variations, ApJ, 725, 128 https://doi.org/10.1088/0004-637X/725/1/128
  20. Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks, ApJ, 413, 619 https://doi.org/10.1086/173031
  21. Kang, H. 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
  22. Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 39
  23. Kang, H., Edmon, P. P., & Jones, T. W. 2012, Non- Thermal Radiation from Type Ia Supernova Remnants, ApJ, 745, 146 https://doi.org/10.1088/0004-637X/745/2/146
  24. Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246 https://doi.org/10.1016/j.astropartphys.2006.02.006
  25. Kang, H., & Jones, T. W. 2007, Self-Similar Evolution of Cosmic-Ray-Modified Quasi-Parallel Plane Shocks, Astropart. Phys, 28, 232 https://doi.org/10.1016/j.astropartphys.2007.05.007
  26. Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  27. Kang, H., Ryu, D., & Jones, T. W. 2009, Self Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum, ApJ, 695, 1273 https://doi.org/10.1088/0004-637X/695/2/1273
  28. Lee, S., Ellison, D. C., & Nagataki, S. 2012, A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant, ApJ, 750, 156 https://doi.org/10.1088/0004-637X/750/2/156
  29. Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65 https://doi.org/10.1046/j.1365-8711.2000.03363.x
  30. Malkov M. A., & Drury, L.O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  31. Malkov M. A., Diamond, P. H., & Sagdeev, R. Z. 2011, Mechanism for Spectral Break in Cosmic Ray Proton Spectrum of Supernova Remnant W44, Nature Communications, 2, 194 https://doi.org/10.1038/ncomms1195
  32. Morlino G., & Caprioli, D. 2012, Strong Evidence for Hadron Acceleration in Tycho's Supernova Remnant, A&A, 538, 81 https://doi.org/10.1051/0004-6361/201117855
  33. Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&A, 453, 387 https://doi.org/10.1051/0004-6361:20064985
  34. Ptuskin, V. S., & Zirakashvili, V. N. 2005, On the Spectrum of High-Energy Cosmic Rays Produced by Supernova Remnants in the Presence of Strong Cosmic-Ray Streaming Instability and Wave Dissipation, A&A, 429, 755 https://doi.org/10.1051/0004-6361:20041517
  35. Ptuskin, V. S., Zirakashvili, V. N., & Seo, E. 2010, Spectrum of Galactic Cosmic Rays Accelerated in Supernova Remnants, ApJ, 718, 31 https://doi.org/10.1088/0004-637X/718/1/31
  36. Reynolds, S. P. 2008, Supernova Remnants at High Energy, ARA&A, 46, 89 https://doi.org/10.1146/annurev.astro.46.060407.145237
  37. Reynolds, S. P., Gaensler, B. M., & Bocchino, F. 2012, Magnetic Fields in Supernova Remnants and Pulsar- Wind Nebulae, Space Sci. Rev., 166, 231 https://doi.org/10.1007/s11214-011-9775-y
  38. Riquelme, M. A., & Spitkovsky, A. 2009, Nonlinear Study of Bell's Cosmic Ray Current-Driven Instability, ApJ, 694, 626 https://doi.org/10.1088/0004-637X/694/1/626
  39. Rogachevskii, I., Kleeorin, N., Brandenburg, A., & Eichler, D. 2012, Cosmic-Ray Current-Driven Turbulence and Mean-Field Dynamo Effect, ApJ, 753, 6 https://doi.org/10.1088/0004-637X/753/1/6
  40. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfv'en Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  41. Zirakashvili, V. N., & Ptuskin, V. S. 2008, Diffusive Shock Acceleration with Magnetic Amplification by Nonresonant Streaming Instability in Supernova Remnants, ApJ, 678, 939 https://doi.org/10.1086/529580

Cited by

  1. DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES vol.764, pp.1, 2013, https://doi.org/10.1088/0004-637X/764/1/95
  2. THREE-DIMENSIONAL SIMULATIONS OF THE NON-THERMAL BROADBAND EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION vol.789, pp.1, 2014, https://doi.org/10.1088/0004-637X/789/1/49
  3. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE vol.777, pp.1, 2013, https://doi.org/10.1088/0004-637X/777/1/25
  4. Probing the cosmic-ray content of galaxy clusters by stackingFermi-LAT count maps vol.560, 2013, https://doi.org/10.1051/0004-6361/201321947
  5. INJECTION OF κ-LIKE SUPRATHERMAL PARTICLES INTO DIFFUSIVE SHOCK ACCELERATION vol.788, pp.2, 2014, https://doi.org/10.1088/0004-637X/788/2/142
  6. SHOCK WAVES AND COSMIC RAY ACCELERATION IN THE OUTSKIRTS OF GALAXY CLUSTERS vol.785, pp.2, 2014, https://doi.org/10.1088/0004-637X/785/2/133